lilt-en-funsd / README.md
icfrowne's picture
End of training
7cc881d verified
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5192
  • Answer: {'precision': 0.8623024830699775, 'recall': 0.9351285189718482, 'f1': 0.897240164415737, 'number': 817}
  • Header: {'precision': 0.5980392156862745, 'recall': 0.5126050420168067, 'f1': 0.5520361990950226, 'number': 119}
  • Question: {'precision': 0.9070191431175935, 'recall': 0.9238625812441968, 'f1': 0.9153633854645814, 'number': 1077}
  • Overall Precision: 0.8729
  • Overall Recall: 0.9041
  • Overall F1: 0.8882
  • Overall Accuracy: 0.8317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.41 10.5263 200 1.0931 {'precision': 0.8183856502242153, 'recall': 0.8935128518971848, 'f1': 0.8543007606787594, 'number': 817} {'precision': 0.42138364779874216, 'recall': 0.5630252100840336, 'f1': 0.48201438848920863, 'number': 119} {'precision': 0.8991185112634672, 'recall': 0.8523676880222841, 'f1': 0.8751191611058151, 'number': 1077} 0.8277 0.8520 0.8397 0.7869
0.0535 21.0526 400 1.2583 {'precision': 0.8495475113122172, 'recall': 0.9192166462668299, 'f1': 0.8830099941211051, 'number': 817} {'precision': 0.5636363636363636, 'recall': 0.5210084033613446, 'f1': 0.5414847161572053, 'number': 119} {'precision': 0.8898999090081893, 'recall': 0.9080779944289693, 'f1': 0.8988970588235294, 'number': 1077} 0.8557 0.8897 0.8724 0.8223
0.0132 31.5789 600 1.3993 {'precision': 0.8563348416289592, 'recall': 0.9265605875152999, 'f1': 0.8900646678424456, 'number': 817} {'precision': 0.6116504854368932, 'recall': 0.5294117647058824, 'f1': 0.5675675675675675, 'number': 119} {'precision': 0.9144486692015209, 'recall': 0.89322191272052, 'f1': 0.9037106622827619, 'number': 1077} 0.8740 0.8852 0.8796 0.8171
0.0078 42.1053 800 1.4683 {'precision': 0.8583042973286876, 'recall': 0.9045287637698899, 'f1': 0.8808104886769966, 'number': 817} {'precision': 0.684931506849315, 'recall': 0.42016806722689076, 'f1': 0.5208333333333334, 'number': 119} {'precision': 0.9023041474654377, 'recall': 0.9090064995357474, 'f1': 0.9056429232192413, 'number': 1077} 0.8757 0.8783 0.8770 0.8070
0.0035 52.6316 1000 1.4809 {'precision': 0.8633177570093458, 'recall': 0.9045287637698899, 'f1': 0.8834429169157203, 'number': 817} {'precision': 0.6582278481012658, 'recall': 0.4369747899159664, 'f1': 0.5252525252525252, 'number': 119} {'precision': 0.886443661971831, 'recall': 0.9350046425255338, 'f1': 0.9100768187980117, 'number': 1077} 0.8682 0.8932 0.8805 0.8184
0.0032 63.1579 1200 1.4947 {'precision': 0.8544018058690744, 'recall': 0.9265605875152999, 'f1': 0.889019377568996, 'number': 817} {'precision': 0.5238095238095238, 'recall': 0.46218487394957986, 'f1': 0.4910714285714286, 'number': 119} {'precision': 0.9100185528756958, 'recall': 0.9108635097493036, 'f1': 0.9104408352668213, 'number': 1077} 0.8666 0.8907 0.8785 0.8247
0.0016 73.6842 1400 1.4909 {'precision': 0.8579676674364896, 'recall': 0.9094247246022031, 'f1': 0.8829471182412357, 'number': 817} {'precision': 0.6666666666666666, 'recall': 0.5378151260504201, 'f1': 0.5953488372093023, 'number': 119} {'precision': 0.9136822773186409, 'recall': 0.9238625812441968, 'f1': 0.9187442289935365, 'number': 1077} 0.8786 0.8952 0.8868 0.8234
0.0006 84.2105 1600 1.5053 {'precision': 0.8689492325855962, 'recall': 0.9008567931456548, 'f1': 0.8846153846153847, 'number': 817} {'precision': 0.5922330097087378, 'recall': 0.5126050420168067, 'f1': 0.5495495495495496, 'number': 119} {'precision': 0.8995475113122172, 'recall': 0.9229340761374187, 'f1': 0.9110907424381303, 'number': 1077} 0.8715 0.8897 0.8805 0.8269
0.0005 94.7368 1800 1.5094 {'precision': 0.8648648648648649, 'recall': 0.9400244798041616, 'f1': 0.9008797653958945, 'number': 817} {'precision': 0.6138613861386139, 'recall': 0.5210084033613446, 'f1': 0.5636363636363637, 'number': 119} {'precision': 0.9150141643059491, 'recall': 0.8997214484679665, 'f1': 0.9073033707865169, 'number': 1077} 0.8784 0.8937 0.8860 0.8309
0.0004 105.2632 2000 1.5111 {'precision': 0.8807017543859649, 'recall': 0.9216646266829865, 'f1': 0.9007177033492823, 'number': 817} {'precision': 0.61, 'recall': 0.5126050420168067, 'f1': 0.5570776255707762, 'number': 119} {'precision': 0.8981064021641119, 'recall': 0.924791086350975, 'f1': 0.9112534309240622, 'number': 1077} 0.8769 0.8992 0.8879 0.8322
0.0004 115.7895 2200 1.5100 {'precision': 0.8672768878718535, 'recall': 0.9277845777233782, 'f1': 0.8965109402720284, 'number': 817} {'precision': 0.6145833333333334, 'recall': 0.4957983193277311, 'f1': 0.5488372093023256, 'number': 119} {'precision': 0.9016245487364621, 'recall': 0.9275766016713092, 'f1': 0.91441647597254, 'number': 1077} 0.8739 0.9021 0.8878 0.8312
0.0002 126.3158 2400 1.5192 {'precision': 0.8623024830699775, 'recall': 0.9351285189718482, 'f1': 0.897240164415737, 'number': 817} {'precision': 0.5980392156862745, 'recall': 0.5126050420168067, 'f1': 0.5520361990950226, 'number': 119} {'precision': 0.9070191431175935, 'recall': 0.9238625812441968, 'f1': 0.9153633854645814, 'number': 1077} 0.8729 0.9041 0.8882 0.8317

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.0.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1