File size: 7,916 Bytes
7cc881d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
model-index:
- name: lilt-en-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5192
- Answer: {'precision': 0.8623024830699775, 'recall': 0.9351285189718482, 'f1': 0.897240164415737, 'number': 817}
- Header: {'precision': 0.5980392156862745, 'recall': 0.5126050420168067, 'f1': 0.5520361990950226, 'number': 119}
- Question: {'precision': 0.9070191431175935, 'recall': 0.9238625812441968, 'f1': 0.9153633854645814, 'number': 1077}
- Overall Precision: 0.8729
- Overall Recall: 0.9041
- Overall F1: 0.8882
- Overall Accuracy: 0.8317

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                     | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.41          | 10.5263  | 200  | 1.0931          | {'precision': 0.8183856502242153, 'recall': 0.8935128518971848, 'f1': 0.8543007606787594, 'number': 817} | {'precision': 0.42138364779874216, 'recall': 0.5630252100840336, 'f1': 0.48201438848920863, 'number': 119} | {'precision': 0.8991185112634672, 'recall': 0.8523676880222841, 'f1': 0.8751191611058151, 'number': 1077} | 0.8277            | 0.8520         | 0.8397     | 0.7869           |
| 0.0535        | 21.0526  | 400  | 1.2583          | {'precision': 0.8495475113122172, 'recall': 0.9192166462668299, 'f1': 0.8830099941211051, 'number': 817} | {'precision': 0.5636363636363636, 'recall': 0.5210084033613446, 'f1': 0.5414847161572053, 'number': 119}   | {'precision': 0.8898999090081893, 'recall': 0.9080779944289693, 'f1': 0.8988970588235294, 'number': 1077} | 0.8557            | 0.8897         | 0.8724     | 0.8223           |
| 0.0132        | 31.5789  | 600  | 1.3993          | {'precision': 0.8563348416289592, 'recall': 0.9265605875152999, 'f1': 0.8900646678424456, 'number': 817} | {'precision': 0.6116504854368932, 'recall': 0.5294117647058824, 'f1': 0.5675675675675675, 'number': 119}   | {'precision': 0.9144486692015209, 'recall': 0.89322191272052, 'f1': 0.9037106622827619, 'number': 1077}   | 0.8740            | 0.8852         | 0.8796     | 0.8171           |
| 0.0078        | 42.1053  | 800  | 1.4683          | {'precision': 0.8583042973286876, 'recall': 0.9045287637698899, 'f1': 0.8808104886769966, 'number': 817} | {'precision': 0.684931506849315, 'recall': 0.42016806722689076, 'f1': 0.5208333333333334, 'number': 119}   | {'precision': 0.9023041474654377, 'recall': 0.9090064995357474, 'f1': 0.9056429232192413, 'number': 1077} | 0.8757            | 0.8783         | 0.8770     | 0.8070           |
| 0.0035        | 52.6316  | 1000 | 1.4809          | {'precision': 0.8633177570093458, 'recall': 0.9045287637698899, 'f1': 0.8834429169157203, 'number': 817} | {'precision': 0.6582278481012658, 'recall': 0.4369747899159664, 'f1': 0.5252525252525252, 'number': 119}   | {'precision': 0.886443661971831, 'recall': 0.9350046425255338, 'f1': 0.9100768187980117, 'number': 1077}  | 0.8682            | 0.8932         | 0.8805     | 0.8184           |
| 0.0032        | 63.1579  | 1200 | 1.4947          | {'precision': 0.8544018058690744, 'recall': 0.9265605875152999, 'f1': 0.889019377568996, 'number': 817}  | {'precision': 0.5238095238095238, 'recall': 0.46218487394957986, 'f1': 0.4910714285714286, 'number': 119}  | {'precision': 0.9100185528756958, 'recall': 0.9108635097493036, 'f1': 0.9104408352668213, 'number': 1077} | 0.8666            | 0.8907         | 0.8785     | 0.8247           |
| 0.0016        | 73.6842  | 1400 | 1.4909          | {'precision': 0.8579676674364896, 'recall': 0.9094247246022031, 'f1': 0.8829471182412357, 'number': 817} | {'precision': 0.6666666666666666, 'recall': 0.5378151260504201, 'f1': 0.5953488372093023, 'number': 119}   | {'precision': 0.9136822773186409, 'recall': 0.9238625812441968, 'f1': 0.9187442289935365, 'number': 1077} | 0.8786            | 0.8952         | 0.8868     | 0.8234           |
| 0.0006        | 84.2105  | 1600 | 1.5053          | {'precision': 0.8689492325855962, 'recall': 0.9008567931456548, 'f1': 0.8846153846153847, 'number': 817} | {'precision': 0.5922330097087378, 'recall': 0.5126050420168067, 'f1': 0.5495495495495496, 'number': 119}   | {'precision': 0.8995475113122172, 'recall': 0.9229340761374187, 'f1': 0.9110907424381303, 'number': 1077} | 0.8715            | 0.8897         | 0.8805     | 0.8269           |
| 0.0005        | 94.7368  | 1800 | 1.5094          | {'precision': 0.8648648648648649, 'recall': 0.9400244798041616, 'f1': 0.9008797653958945, 'number': 817} | {'precision': 0.6138613861386139, 'recall': 0.5210084033613446, 'f1': 0.5636363636363637, 'number': 119}   | {'precision': 0.9150141643059491, 'recall': 0.8997214484679665, 'f1': 0.9073033707865169, 'number': 1077} | 0.8784            | 0.8937         | 0.8860     | 0.8309           |
| 0.0004        | 105.2632 | 2000 | 1.5111          | {'precision': 0.8807017543859649, 'recall': 0.9216646266829865, 'f1': 0.9007177033492823, 'number': 817} | {'precision': 0.61, 'recall': 0.5126050420168067, 'f1': 0.5570776255707762, 'number': 119}                 | {'precision': 0.8981064021641119, 'recall': 0.924791086350975, 'f1': 0.9112534309240622, 'number': 1077}  | 0.8769            | 0.8992         | 0.8879     | 0.8322           |
| 0.0004        | 115.7895 | 2200 | 1.5100          | {'precision': 0.8672768878718535, 'recall': 0.9277845777233782, 'f1': 0.8965109402720284, 'number': 817} | {'precision': 0.6145833333333334, 'recall': 0.4957983193277311, 'f1': 0.5488372093023256, 'number': 119}   | {'precision': 0.9016245487364621, 'recall': 0.9275766016713092, 'f1': 0.91441647597254, 'number': 1077}   | 0.8739            | 0.9021         | 0.8878     | 0.8312           |
| 0.0002        | 126.3158 | 2400 | 1.5192          | {'precision': 0.8623024830699775, 'recall': 0.9351285189718482, 'f1': 0.897240164415737, 'number': 817}  | {'precision': 0.5980392156862745, 'recall': 0.5126050420168067, 'f1': 0.5520361990950226, 'number': 119}   | {'precision': 0.9070191431175935, 'recall': 0.9238625812441968, 'f1': 0.9153633854645814, 'number': 1077} | 0.8729            | 0.9041         | 0.8882     | 0.8317           |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.0.0+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1