|
--- |
|
base_model: klue/roberta-base |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:10501 |
|
- loss:CosineSimilarityLoss |
|
widget: |
|
- source_sentence: 기업은 생존 문제에 직면하고, 자영업자와 소상공인의 고통은 이루 말할 수 없을 정도입니다. |
|
sentences: |
|
- 자유무역은 기업이 서로를 신뢰하고, 미래의 불확실성을 낮추는 안전장치입니다. |
|
- 국가 임상연구 승인, 시행기관 지정, 장기 추적조사 등 안전관리체계를 구축하고 치료 개발 및 임상연구 수행을 위한 RD 투자를 확대합니다. |
|
- 중심가와 거리가 조금 먼 점 빼고는 정말 모든게 너무 좋았던 숙소입니다! |
|
- source_sentence: 타이페이를 다시 간다면 여기 또 올거예요. |
|
sentences: |
|
- 사진으로 봤던것보다 훨씬 더 좋았습니다 |
|
- 겨울에 난방 온도 이십오도 이상으로 올리지마라고 경고했어 |
|
- 만약 내가 다시 타이페이에 간다면, 나는 여기에 다시 올 것입니다. |
|
- source_sentence: 호주의 좋은 가정집에서 묵는 느낌이었어요. |
|
sentences: |
|
- 어린이 교통사고 위험지역에 CCTV 2087대, 신호등 2146개를 올해 상반기 중으로 설치하고 옐로카펫과 노란발자국 등을 올해 하반기에 초등학교 |
|
100곳에 시범 설치한다. |
|
- 호주에 있는 좋은 집에서 지내는 것 같았어요. |
|
- 그러나 호텔업계 노사가 가장 어려운 시기에, 가장 모범적으로 함께 마음을 모았습니다. |
|
- source_sentence: 그들덕분에 우리는 4일간 편안히 쉴 수 있었습니다. |
|
sentences: |
|
- 그들 덕분에, 우리는 4일 동안 쉴 수 있었어요. |
|
- 주변에 두 개의 지하철역이 있습니다. 큰 공원, 큰 슈퍼마켓, 그리고 편의점이 있습니다. |
|
- 방은 쾌적하고 에어컨도 아주 잘 나와요. |
|
- source_sentence: 테라스에서 봤던 뷰와 그곳에서 먹었던 식사가 그리울 것 같아요. |
|
sentences: |
|
- 테라스에서 본 풍경과 거기서 먹었던 음식이 그리울 것 같아요. |
|
- 이쪽 주변에서 여행할 계획이라면 추천합니다! |
|
- 저희 할아버지는 매우 친절하고 친절하십니다. |
|
co2_eq_emissions: |
|
emissions: 7.379414346751554 |
|
energy_consumed: 0.016863301234344347 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: false |
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700 |
|
ram_total_size: 62.56697463989258 |
|
hours_used: 0.057 |
|
hardware_used: 1 x NVIDIA GeForce RTX 4090 |
|
model-index: |
|
- name: SentenceTransformer based on klue/roberta-base |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.34770704341988723 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.35560473197486514 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.3673846313946801 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.36460670798564826 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.3607451203867209 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.35482778401649034 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.21251167982120983 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.20063256899469895 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.3673846313946801 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.36460670798564826 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.961968864970919 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9196100863981246 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.9530332430579778 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.9186168431687389 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9532923011007042 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.9190754386835427 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9493179101338206 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8999468521869318 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.961968864970919 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.9196100863981246 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on klue/roberta-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'테라스에서 봤던 뷰와 그곳에서 먹었던 식사가 그리울 것 같아요.', |
|
'테라스에서 본 풍경과 거기서 먹었던 음식이 그리울 것 같아요.', |
|
'이쪽 주변에서 여행할 계획이라면 추천합니다!', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.3477 | |
|
| spearman_cosine | 0.3556 | |
|
| pearson_manhattan | 0.3674 | |
|
| spearman_manhattan | 0.3646 | |
|
| pearson_euclidean | 0.3607 | |
|
| spearman_euclidean | 0.3548 | |
|
| pearson_dot | 0.2125 | |
|
| spearman_dot | 0.2006 | |
|
| pearson_max | 0.3674 | |
|
| **spearman_max** | **0.3646** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| pearson_cosine | 0.962 | |
|
| spearman_cosine | 0.9196 | |
|
| pearson_manhattan | 0.953 | |
|
| spearman_manhattan | 0.9186 | |
|
| pearson_euclidean | 0.9533 | |
|
| spearman_euclidean | 0.9191 | |
|
| pearson_dot | 0.9493 | |
|
| spearman_dot | 0.8999 | |
|
| pearson_max | 0.962 | |
|
| **spearman_max** | **0.9196** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 10,501 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 20.23 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.94 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:----------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:---------------------------------| |
|
| <code>지하철 역 내려서 1분정도의 아주 가까운 거리입니다.</code> | <code>지하철역에서 1분 정도 아주 가까운 거리입니다.</code> | <code>0.86</code> | |
|
| <code>그것빼곤 2인여행자들에게는 좋은숙소에요!</code> | <code>계단이 많다는거 빼곤 완벽한 숙소에요!</code> | <code>0.27999999999999997</code> | |
|
| <code>이어 현금이 286만 가구(13.2%) 1조3007억원, 선불카드가 75만 가구(3.5%) 4990억원, 지역사랑상품권은 63만 가구(2.9%) 4171억원으로 각각 집계됐다.</code> | <code>이어 현금 286만 가구(13.2%), 현금 1조337억 원, 선불카드 75만 가구(3.5%), 4990억 원, 지역사랑상품권 63만 가구(2.9%), 4171억 원 순이었습니다.</code> | <code>0.86</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 4 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | spearman_max | |
|
|:------:|:----:|:-------------:|:------------:| |
|
| 0 | 0 | - | 0.3646 | |
|
| 0.7610 | 500 | 0.0283 | - | |
|
| 1.0 | 657 | - | 0.9075 | |
|
| 1.5221 | 1000 | 0.0082 | 0.9148 | |
|
| 2.0 | 1314 | - | 0.9148 | |
|
| 2.2831 | 1500 | 0.0047 | - | |
|
| 3.0 | 1971 | - | 0.9180 | |
|
| 3.0441 | 2000 | 0.0034 | 0.9168 | |
|
| 3.8052 | 2500 | 0.0027 | - | |
|
| 4.0 | 2628 | - | 0.9196 | |
|
|
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Energy Consumed**: 0.017 kWh |
|
- **Carbon Emitted**: 0.007 kg of CO2 |
|
- **Hours Used**: 0.057 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 4090 |
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700 |
|
- **RAM Size**: 62.57 GB |
|
|
|
### Framework Versions |
|
- Python: 3.9.0 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.44.1 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |