hyunkookim commited on
Commit
05bb693
·
verified ·
1 Parent(s): 8a5c5c3

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:10501
24
+ - loss:CosineSimilarityLoss
25
+ widget:
26
+ - source_sentence: 기업은 생존 문제에 직면하고, 자영업자와 소상공인의 고통은 이루 말할 수 없을 정도입니다.
27
+ sentences:
28
+ - 자유무역은 기업이 서로를 신뢰하고, 미래의 불확실성을 낮추는 안전장치입니다.
29
+ - 국가 임상연구 승인, 시행기관 지정, 장기 추적조사 등 안전관리체계를 구축하고 치료 개발 및 임상연구 수행을 위한 RD 투자를 확대합니다.
30
+ - 중심가와 거리가 조금 먼 점 빼고는 정말 모든게 너무 좋았던 숙소입니다!
31
+ - source_sentence: 타이페이를 다시 간다면 여기 또 올거예요.
32
+ sentences:
33
+ - 사진으로 봤던것보다 훨씬 더 좋았습니다
34
+ - 겨울에 난방 온도 이십오도 이상으로 올리지마라고 경고했어
35
+ - 만약 내가 다시 타이페이에 간다면, 나는 여기에 다시 올 것입니다.
36
+ - source_sentence: 호주의 좋은 가정집에서 묵는 느낌이었어요.
37
+ sentences:
38
+ - 어린이 교통사고 위험지역에 CCTV 2087대, 신호등 2146개를 올해 상반기 중으로 설치하고 옐로카펫과 노란발자국 등을 올해 하반기에 초등학교
39
+ 100곳에 시범 설치한다.
40
+ - 호주에 있는 좋은 집에서 지내는 것 같았어요.
41
+ - 그러나 호텔업계 노사가 가장 어려운 시기에, 가장 모범적으로 함께 마음을 모았습니다.
42
+ - source_sentence: 그들덕분에 우리는 4일간 편안히 쉴 수 있었습니다.
43
+ sentences:
44
+ - 그들 덕분에, 우리는 4일 동안 쉴 수 있었어요.
45
+ - 주변에 두 개의 지하철역이 있습니다. 큰 공원, 큰 슈퍼마켓, 그리고 편의점이 있습니다.
46
+ - 방은 쾌적하고 에어컨도 아주 잘 나와요.
47
+ - source_sentence: 테라스에서 봤던 뷰와 그곳에서 먹었던 식사가 그리울 것 같아요.
48
+ sentences:
49
+ - 테라스에서 본 풍경과 거기서 먹었던 음식이 그리울 것 같아요.
50
+ - 이쪽 주변에서 여행할 계획이라면 추천합니다!
51
+ - 저희 할아버지는 매우 친절하고 친절하십니다.
52
+ co2_eq_emissions:
53
+ emissions: 7.379414346751554
54
+ energy_consumed: 0.016863301234344347
55
+ source: codecarbon
56
+ training_type: fine-tuning
57
+ on_cloud: false
58
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700
59
+ ram_total_size: 62.56697463989258
60
+ hours_used: 0.057
61
+ hardware_used: 1 x NVIDIA GeForce RTX 4090
62
+ model-index:
63
+ - name: SentenceTransformer based on klue/roberta-base
64
+ results:
65
+ - task:
66
+ type: semantic-similarity
67
+ name: Semantic Similarity
68
+ dataset:
69
+ name: Unknown
70
+ type: unknown
71
+ metrics:
72
+ - type: pearson_cosine
73
+ value: 0.34770704341988723
74
+ name: Pearson Cosine
75
+ - type: spearman_cosine
76
+ value: 0.35560473197486514
77
+ name: Spearman Cosine
78
+ - type: pearson_manhattan
79
+ value: 0.3673846313946801
80
+ name: Pearson Manhattan
81
+ - type: spearman_manhattan
82
+ value: 0.36460670798564826
83
+ name: Spearman Manhattan
84
+ - type: pearson_euclidean
85
+ value: 0.3607451203867209
86
+ name: Pearson Euclidean
87
+ - type: spearman_euclidean
88
+ value: 0.35482778401649034
89
+ name: Spearman Euclidean
90
+ - type: pearson_dot
91
+ value: 0.21251167982120983
92
+ name: Pearson Dot
93
+ - type: spearman_dot
94
+ value: 0.20063256899469895
95
+ name: Spearman Dot
96
+ - type: pearson_max
97
+ value: 0.3673846313946801
98
+ name: Pearson Max
99
+ - type: spearman_max
100
+ value: 0.36460670798564826
101
+ name: Spearman Max
102
+ - type: pearson_cosine
103
+ value: 0.961968864970919
104
+ name: Pearson Cosine
105
+ - type: spearman_cosine
106
+ value: 0.9196100863981246
107
+ name: Spearman Cosine
108
+ - type: pearson_manhattan
109
+ value: 0.9530332430579778
110
+ name: Pearson Manhattan
111
+ - type: spearman_manhattan
112
+ value: 0.9186168431687389
113
+ name: Spearman Manhattan
114
+ - type: pearson_euclidean
115
+ value: 0.9532923011007042
116
+ name: Pearson Euclidean
117
+ - type: spearman_euclidean
118
+ value: 0.9190754386835427
119
+ name: Spearman Euclidean
120
+ - type: pearson_dot
121
+ value: 0.9493179101338206
122
+ name: Pearson Dot
123
+ - type: spearman_dot
124
+ value: 0.8999468521869318
125
+ name: Spearman Dot
126
+ - type: pearson_max
127
+ value: 0.961968864970919
128
+ name: Pearson Max
129
+ - type: spearman_max
130
+ value: 0.9196100863981246
131
+ name: Spearman Max
132
+ ---
133
+
134
+ # SentenceTransformer based on klue/roberta-base
135
+
136
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
137
+
138
+ ## Model Details
139
+
140
+ ### Model Description
141
+ - **Model Type:** Sentence Transformer
142
+ - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
143
+ - **Maximum Sequence Length:** 512 tokens
144
+ - **Output Dimensionality:** 768 tokens
145
+ - **Similarity Function:** Cosine Similarity
146
+ <!-- - **Training Dataset:** Unknown -->
147
+ <!-- - **Language:** Unknown -->
148
+ <!-- - **License:** Unknown -->
149
+
150
+ ### Model Sources
151
+
152
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
153
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
154
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
155
+
156
+ ### Full Model Architecture
157
+
158
+ ```
159
+ SentenceTransformer(
160
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
161
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
162
+ )
163
+ ```
164
+
165
+ ## Usage
166
+
167
+ ### Direct Usage (Sentence Transformers)
168
+
169
+ First install the Sentence Transformers library:
170
+
171
+ ```bash
172
+ pip install -U sentence-transformers
173
+ ```
174
+
175
+ Then you can load this model and run inference.
176
+ ```python
177
+ from sentence_transformers import SentenceTransformer
178
+
179
+ # Download from the 🤗 Hub
180
+ model = SentenceTransformer("sentence_transformers_model_id")
181
+ # Run inference
182
+ sentences = [
183
+ '테라스에서 봤던 뷰와 그곳에서 먹었던 식사가 그리울 것 같아요.',
184
+ '테라스에서 본 풍경과 거기서 먹었던 음식이 그리울 것 같아요.',
185
+ '이쪽 주변에서 여행할 계획이라면 추천합니다!',
186
+ ]
187
+ embeddings = model.encode(sentences)
188
+ print(embeddings.shape)
189
+ # [3, 768]
190
+
191
+ # Get the similarity scores for the embeddings
192
+ similarities = model.similarity(embeddings, embeddings)
193
+ print(similarities.shape)
194
+ # [3, 3]
195
+ ```
196
+
197
+ <!--
198
+ ### Direct Usage (Transformers)
199
+
200
+ <details><summary>Click to see the direct usage in Transformers</summary>
201
+
202
+ </details>
203
+ -->
204
+
205
+ <!--
206
+ ### Downstream Usage (Sentence Transformers)
207
+
208
+ You can finetune this model on your own dataset.
209
+
210
+ <details><summary>Click to expand</summary>
211
+
212
+ </details>
213
+ -->
214
+
215
+ <!--
216
+ ### Out-of-Scope Use
217
+
218
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
219
+ -->
220
+
221
+ ## Evaluation
222
+
223
+ ### Metrics
224
+
225
+ #### Semantic Similarity
226
+
227
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
228
+
229
+ | Metric | Value |
230
+ |:-------------------|:-----------|
231
+ | pearson_cosine | 0.3477 |
232
+ | spearman_cosine | 0.3556 |
233
+ | pearson_manhattan | 0.3674 |
234
+ | spearman_manhattan | 0.3646 |
235
+ | pearson_euclidean | 0.3607 |
236
+ | spearman_euclidean | 0.3548 |
237
+ | pearson_dot | 0.2125 |
238
+ | spearman_dot | 0.2006 |
239
+ | pearson_max | 0.3674 |
240
+ | **spearman_max** | **0.3646** |
241
+
242
+ #### Semantic Similarity
243
+
244
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
245
+
246
+ | Metric | Value |
247
+ |:-------------------|:-----------|
248
+ | pearson_cosine | 0.962 |
249
+ | spearman_cosine | 0.9196 |
250
+ | pearson_manhattan | 0.953 |
251
+ | spearman_manhattan | 0.9186 |
252
+ | pearson_euclidean | 0.9533 |
253
+ | spearman_euclidean | 0.9191 |
254
+ | pearson_dot | 0.9493 |
255
+ | spearman_dot | 0.8999 |
256
+ | pearson_max | 0.962 |
257
+ | **spearman_max** | **0.9196** |
258
+
259
+ <!--
260
+ ## Bias, Risks and Limitations
261
+
262
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
263
+ -->
264
+
265
+ <!--
266
+ ### Recommendations
267
+
268
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
269
+ -->
270
+
271
+ ## Training Details
272
+
273
+ ### Training Dataset
274
+
275
+ #### Unnamed Dataset
276
+
277
+
278
+ * Size: 10,501 training samples
279
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
280
+ * Approximate statistics based on the first 1000 samples:
281
+ | | sentence_0 | sentence_1 | label |
282
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
283
+ | type | string | string | float |
284
+ | details | <ul><li>min: 7 tokens</li><li>mean: 20.23 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.94 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
285
+ * Samples:
286
+ | sentence_0 | sentence_1 | label |
287
+ |:----------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:---------------------------------|
288
+ | <code>지하철 역 내려서 1분정도의 아주 가까운 거리입니다.</code> | <code>지하철역에서 1분 정도 아주 가까운 거리입니다.</code> | <code>0.86</code> |
289
+ | <code>그것빼곤 2인여행자들에게는 좋은숙소에요!</code> | <code>계단이 많다는거 빼곤 완벽한 숙소에요!</code> | <code>0.27999999999999997</code> |
290
+ | <code>이어 현금이 286만 가구(13.2%) 1조3007억원, 선불카드가 75만 가구(3.5%) 4990억원, 지역사랑상품권은 63만 가구(2.9%) 4171억원으로 각각 집계됐다.</code> | <code>이어 현금 286만 가구(13.2%), 현금 1조337억 원, 선불카드 75만 가구(3.5%), 4990억 원, 지역사랑상품권 63만 가구(2.9%), 4171억 원 순이었습니다.</code> | <code>0.86</code> |
291
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
292
+ ```json
293
+ {
294
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
295
+ }
296
+ ```
297
+
298
+ ### Training Hyperparameters
299
+ #### Non-Default Hyperparameters
300
+
301
+ - `eval_strategy`: steps
302
+ - `per_device_train_batch_size`: 16
303
+ - `per_device_eval_batch_size`: 16
304
+ - `num_train_epochs`: 4
305
+ - `multi_dataset_batch_sampler`: round_robin
306
+
307
+ #### All Hyperparameters
308
+ <details><summary>Click to expand</summary>
309
+
310
+ - `overwrite_output_dir`: False
311
+ - `do_predict`: False
312
+ - `eval_strategy`: steps
313
+ - `prediction_loss_only`: True
314
+ - `per_device_train_batch_size`: 16
315
+ - `per_device_eval_batch_size`: 16
316
+ - `per_gpu_train_batch_size`: None
317
+ - `per_gpu_eval_batch_size`: None
318
+ - `gradient_accumulation_steps`: 1
319
+ - `eval_accumulation_steps`: None
320
+ - `torch_empty_cache_steps`: None
321
+ - `learning_rate`: 5e-05
322
+ - `weight_decay`: 0.0
323
+ - `adam_beta1`: 0.9
324
+ - `adam_beta2`: 0.999
325
+ - `adam_epsilon`: 1e-08
326
+ - `max_grad_norm`: 1
327
+ - `num_train_epochs`: 4
328
+ - `max_steps`: -1
329
+ - `lr_scheduler_type`: linear
330
+ - `lr_scheduler_kwargs`: {}
331
+ - `warmup_ratio`: 0.0
332
+ - `warmup_steps`: 0
333
+ - `log_level`: passive
334
+ - `log_level_replica`: warning
335
+ - `log_on_each_node`: True
336
+ - `logging_nan_inf_filter`: True
337
+ - `save_safetensors`: True
338
+ - `save_on_each_node`: False
339
+ - `save_only_model`: False
340
+ - `restore_callback_states_from_checkpoint`: False
341
+ - `no_cuda`: False
342
+ - `use_cpu`: False
343
+ - `use_mps_device`: False
344
+ - `seed`: 42
345
+ - `data_seed`: None
346
+ - `jit_mode_eval`: False
347
+ - `use_ipex`: False
348
+ - `bf16`: False
349
+ - `fp16`: False
350
+ - `fp16_opt_level`: O1
351
+ - `half_precision_backend`: auto
352
+ - `bf16_full_eval`: False
353
+ - `fp16_full_eval`: False
354
+ - `tf32`: None
355
+ - `local_rank`: 0
356
+ - `ddp_backend`: None
357
+ - `tpu_num_cores`: None
358
+ - `tpu_metrics_debug`: False
359
+ - `debug`: []
360
+ - `dataloader_drop_last`: False
361
+ - `dataloader_num_workers`: 0
362
+ - `dataloader_prefetch_factor`: None
363
+ - `past_index`: -1
364
+ - `disable_tqdm`: False
365
+ - `remove_unused_columns`: True
366
+ - `label_names`: None
367
+ - `load_best_model_at_end`: False
368
+ - `ignore_data_skip`: False
369
+ - `fsdp`: []
370
+ - `fsdp_min_num_params`: 0
371
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
372
+ - `fsdp_transformer_layer_cls_to_wrap`: None
373
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
374
+ - `deepspeed`: None
375
+ - `label_smoothing_factor`: 0.0
376
+ - `optim`: adamw_torch
377
+ - `optim_args`: None
378
+ - `adafactor`: False
379
+ - `group_by_length`: False
380
+ - `length_column_name`: length
381
+ - `ddp_find_unused_parameters`: None
382
+ - `ddp_bucket_cap_mb`: None
383
+ - `ddp_broadcast_buffers`: False
384
+ - `dataloader_pin_memory`: True
385
+ - `dataloader_persistent_workers`: False
386
+ - `skip_memory_metrics`: True
387
+ - `use_legacy_prediction_loop`: False
388
+ - `push_to_hub`: False
389
+ - `resume_from_checkpoint`: None
390
+ - `hub_model_id`: None
391
+ - `hub_strategy`: every_save
392
+ - `hub_private_repo`: False
393
+ - `hub_always_push`: False
394
+ - `gradient_checkpointing`: False
395
+ - `gradient_checkpointing_kwargs`: None
396
+ - `include_inputs_for_metrics`: False
397
+ - `eval_do_concat_batches`: True
398
+ - `fp16_backend`: auto
399
+ - `push_to_hub_model_id`: None
400
+ - `push_to_hub_organization`: None
401
+ - `mp_parameters`:
402
+ - `auto_find_batch_size`: False
403
+ - `full_determinism`: False
404
+ - `torchdynamo`: None
405
+ - `ray_scope`: last
406
+ - `ddp_timeout`: 1800
407
+ - `torch_compile`: False
408
+ - `torch_compile_backend`: None
409
+ - `torch_compile_mode`: None
410
+ - `dispatch_batches`: None
411
+ - `split_batches`: None
412
+ - `include_tokens_per_second`: False
413
+ - `include_num_input_tokens_seen`: False
414
+ - `neftune_noise_alpha`: None
415
+ - `optim_target_modules`: None
416
+ - `batch_eval_metrics`: False
417
+ - `eval_on_start`: False
418
+ - `eval_use_gather_object`: False
419
+ - `batch_sampler`: batch_sampler
420
+ - `multi_dataset_batch_sampler`: round_robin
421
+
422
+ </details>
423
+
424
+ ### Training Logs
425
+ | Epoch | Step | Training Loss | spearman_max |
426
+ |:------:|:----:|:-------------:|:------------:|
427
+ | 0 | 0 | - | 0.3646 |
428
+ | 0.7610 | 500 | 0.0283 | - |
429
+ | 1.0 | 657 | - | 0.9075 |
430
+ | 1.5221 | 1000 | 0.0082 | 0.9148 |
431
+ | 2.0 | 1314 | - | 0.9148 |
432
+ | 2.2831 | 1500 | 0.0047 | - |
433
+ | 3.0 | 1971 | - | 0.9180 |
434
+ | 3.0441 | 2000 | 0.0034 | 0.9168 |
435
+ | 3.8052 | 2500 | 0.0027 | - |
436
+ | 4.0 | 2628 | - | 0.9196 |
437
+
438
+
439
+ ### Environmental Impact
440
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
441
+ - **Energy Consumed**: 0.017 kWh
442
+ - **Carbon Emitted**: 0.007 kg of CO2
443
+ - **Hours Used**: 0.057 hours
444
+
445
+ ### Training Hardware
446
+ - **On Cloud**: No
447
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 4090
448
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700
449
+ - **RAM Size**: 62.57 GB
450
+
451
+ ### Framework Versions
452
+ - Python: 3.9.0
453
+ - Sentence Transformers: 3.0.1
454
+ - Transformers: 4.44.1
455
+ - PyTorch: 2.3.1+cu121
456
+ - Accelerate: 0.33.0
457
+ - Datasets: 2.19.1
458
+ - Tokenizers: 0.19.1
459
+
460
+ ## Citation
461
+
462
+ ### BibTeX
463
+
464
+ #### Sentence Transformers
465
+ ```bibtex
466
+ @inproceedings{reimers-2019-sentence-bert,
467
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
468
+ author = "Reimers, Nils and Gurevych, Iryna",
469
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
470
+ month = "11",
471
+ year = "2019",
472
+ publisher = "Association for Computational Linguistics",
473
+ url = "https://arxiv.org/abs/1908.10084",
474
+ }
475
+ ```
476
+
477
+ <!--
478
+ ## Glossary
479
+
480
+ *Clearly define terms in order to be accessible across audiences.*
481
+ -->
482
+
483
+ <!--
484
+ ## Model Card Authors
485
+
486
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
487
+ -->
488
+
489
+ <!--
490
+ ## Model Card Contact
491
+
492
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
493
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.1",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef6cb4617ea78f430fc88514db380aefc4ae196203ac391928e751f9e610fa7f
3
+ size 442494816
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff