nsd_model / backbone.py
huzey's picture
Upload folder using huggingface_hub
ec378c3 verified
# %%
import copy
from functools import partial
import os
from typing import Any, Dict, List, Optional, Tuple, Union
from einops import rearrange
from filelock import FileLock
import numpy as np
import torch
from torch import Tensor, nn
import torch.nn.functional as F
from config import AutoConfig
from registry import Registry
import math
import torch.nn.functional as F
BACKBONES = Registry()
class LoRALinearLayer(nn.Module):
def __init__(self, in_features, out_features, rank=4):
super().__init__()
if rank > min(in_features, out_features):
raise ValueError(
f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}"
)
self.down = nn.Linear(in_features, rank, bias=False)
self.up = nn.Linear(rank, out_features, bias=False)
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
def forward(self, hidden_states):
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
return up_hidden_states.to(orig_dtype)
@property
def weight(self):
return self.up.weight @ self.down.weight
@property
def bias(self):
return 0
class MonkeyLoRALinear(nn.Module):
def __init__(self, fc: nn.Linear, rank=4, lora_scale=1):
super().__init__()
if rank > min(fc.in_features, fc.out_features):
raise ValueError(
f"LoRA rank {rank} must be less or equal than {min(fc.in_features, fc.out_features)}"
)
if not isinstance(fc, nn.Linear):
raise ValueError(
f"MonkeyLoRALinear only support nn.Linear, but got {type(fc)}"
)
self.fc = fc
self.rank = rank
self.lora_scale = lora_scale
in_features = fc.in_features
out_features = fc.out_features
self.fc_lora = LoRALinearLayer(in_features, out_features, rank)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc(hidden_states) + self.lora_scale * self.fc_lora(
hidden_states
)
return hidden_states
@property
def weight(self):
return self.fc.weight + self.lora_scale * self.fc_lora.weight
@property
def bias(self):
return self.fc.bias
class AdaLNZeroPatch(nn.Module):
def __init__(self, embed_dim, d_c=64, adaln_scale=1.0):
super().__init__()
self.embed_dim = embed_dim
self.d_c = d_c
self.adaln_scale = adaln_scale
# for condition (behavior data)
self.adaLN_modulation = nn.Sequential(
nn.Linear(self.d_c, 6 * self.embed_dim, bias=False),
nn.Tanh(),
)
nn.init.zeros_(self.adaLN_modulation[0].weight)
def forward(self, c):
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
) = (
self.adaLN_modulation(c) * self.adaln_scale
).chunk(6, dim=1)
scale_msa = scale_msa + 1
gate_msa = gate_msa + 1
scale_mlp = scale_mlp + 1
gate_mlp = gate_mlp + 1
return shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp
def maxavg_globalpool2d(x):
out = torch.cat([F.adaptive_avg_pool2d(x, 1), F.adaptive_max_pool2d(x, 1)], dim=1)
out = out.squeeze(-1).squeeze(-1)
return out
# from dinov2.models.vision_transformer import DinoVisionTransformer
# from dinov2.layers.attention import MemEffAttention, Attention
# from dinov2.layers.block import NestedTensorBlock, Block
# from dinov2.layers.block import drop_add_residual_stochastic_depth
class AdaLNDiNOBlock(nn.Module):
def __init__(self, block, d_c=64, adaln_scale=1.0):
super().__init__()
self.block = block
self.embed_dim = block.norm1.weight.shape[0]
self.d_c = d_c
self.adaLN = AdaLNZeroPatch(self.embed_dim, d_c=d_c, adaln_scale=adaln_scale)
def forward(self, x, c: Optional[torch.Tensor] = None):
# conditioning can be None
bsz = x.shape[0]
if c is None:
c = torch.zeros(bsz, self.d_c, device=x.device, dtype=x.dtype)
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
) = self.adaLN(c)
def attn_residual_func(x: Tensor) -> Tensor:
return self.block.ls1(
self.block.attn(
self.modulate(self.block.norm1(x), shift_msa, scale_msa)
)
) * gate_msa.unsqueeze(1)
def ffn_residual_func(x: Tensor) -> Tensor:
return self.block.ls2(
self.block.mlp(self.modulate(self.block.norm2(x), shift_mlp, scale_mlp))
) * gate_mlp.unsqueeze(1)
# if self.block.training and self.block.sample_drop_ratio > 0.1:
# # the overhead is compensated only for a drop path rate larger than 0.1
# x = drop_add_residual_stochastic_depth(
# x,
# residual_func=attn_residual_func,
# sample_drop_ratio=self.block.sample_drop_ratio,
# )
# x = drop_add_residual_stochastic_depth(
# x,
# residual_func=ffn_residual_func,
# sample_drop_ratio=self.block.sample_drop_ratio,
# )
# elif self.block.training and self.block.sample_drop_ratio > 0.0:
# x = x + self.block.drop_path1(attn_residual_func(x))
# x = x + self.block.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
# else:
x = x + attn_residual_func(x)
x = x + ffn_residual_func(x)
return x
@staticmethod
def modulate(x, shift, scale):
return x * scale.unsqueeze(1) + shift.unsqueeze(1)
@BACKBONES.register("adaln_lora_dinov2_vit")
class AdaLNLoRADiNOv2ViT(nn.Module):
def __init__(
self, lora_scale=1.0, rank=4, d_c=64, adaln_scale=1.0, ver='dinov2_vitl14', **kwargs
) -> None:
super().__init__()
vision_model = torch.hub.load("facebookresearch/dinov2", ver)
self.vision_model = vision_model
self.vision_model.requires_grad_(False)
self.lora_scale = lora_scale
self.rank = rank
self.d_c = d_c
self.adaln_scale = adaln_scale
self.init_lora()
def init_lora(self):
self.vision_model = self.inject_lora_and_adaln_dinov2(
self.vision_model,
lora_scale=self.lora_scale,
rank=self.rank,
d_c=self.d_c,
adaln_scale=self.adaln_scale,
)
@staticmethod
def inject_lora_and_adaln_dinov2(
model, lora_scale=1.0, rank=4, d_c=64, adaln_scale=1.0
):
for _i in range(len(model.blocks)):
block = model.blocks[_i]
attn = block.attn
block.attn.qkv = MonkeyLoRALinear(
attn.qkv, rank=rank, lora_scale=lora_scale
)
block.attn.proj = MonkeyLoRALinear(
attn.proj, rank=rank, lora_scale=lora_scale
)
block.mlp.fc1 = MonkeyLoRALinear(
block.mlp.fc1, rank=rank, lora_scale=lora_scale
)
block.mlp.fc2 = MonkeyLoRALinear(
block.mlp.fc2, rank=rank, lora_scale=lora_scale
)
model.blocks[_i] = AdaLNDiNOBlock(block, d_c=d_c, adaln_scale=adaln_scale)
return model
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.vision_model(x)
def get_intermediate_layers(
self,
x,
n: List[str] = [0, 1, 2, 3],
c: Optional[torch.Tensor] = None,
reshape=True,
masks=None,
):
x = self.vision_model.prepare_tokens_with_masks(x, masks)
output_dict = {}
cls_dict = {}
for i, blk in enumerate(self.vision_model.blocks):
x = blk(x, c=c)
if i not in n:
continue
saved_x = x.clone()
if reshape:
saved_x = saved_x[:, 1:, :] # remove cls token, [B, N, C]
p = int(np.sqrt(saved_x.shape[1]))
saved_x = rearrange(saved_x, "b (p1 p2) c -> b c p1 p2", p1=p, p2=p)
output_dict[str(i)] = saved_x
if i == len(self.vision_model.blocks) - 1:
cls_dict[str(i)] = x[:, 0, :] # [B, C]
else:
cls_dict[str(i)] = maxavg_globalpool2d(saved_x)
return output_dict, cls_dict
@BACKBONES.register("dinov2_vit_l")
def dinov2_vit_l(**kwargs):
ver='dinov2_vitl14'
return AdaLNLoRADiNOv2ViT(ver=ver, **kwargs)
@BACKBONES.register("dinov2_vit_b")
def dinov2_vit_b(**kwargs):
ver='dinov2_vitb14'
return AdaLNLoRADiNOv2ViT(ver=ver, **kwargs)
@BACKBONES.register("dinov2_vit_s")
def dinov2_vit_s(**kwargs):
ver='dinov2_vits14'
return AdaLNLoRADiNOv2ViT(ver=ver, **kwargs)
def clean_state_dict(state_dict):
new_state_dict = {}
for k, v in state_dict.items():
if ".module." in k:
k = k.replace(".module.", ".")
new_state_dict[k] = v
return new_state_dict
def build_backbone(cfg: AutoConfig):
# home = os.path.expanduser("~")
# lock_path = os.path.join(home, ".cache", "download.lock")
# with FileLock(lock_path):
return BACKBONES[cfg.MODEL.BACKBONE.NAME](
lora_scale=cfg.MODEL.BACKBONE.LORA.SCALE,
rank=cfg.MODEL.BACKBONE.LORA.RANK,
d_c=cfg.MODEL.COND.DIM,
adaln_scale=cfg.MODEL.BACKBONE.ADAPTIVE_LN.SCALE,
)
def build_backbone_prev(cfg: AutoConfig):
return BACKBONES[cfg.MODEL.BACKBONE_SMALL.NAME](
lora_scale=cfg.MODEL.BACKBONE_SMALL.LORA.SCALE,
rank=cfg.MODEL.BACKBONE_SMALL.LORA.RANK,
d_c=cfg.MODEL.COND.DIM,
adaln_scale=cfg.MODEL.BACKBONE_SMALL.ADAPTIVE_LN.SCALE,
)
class SubjectTimeEmbed(nn.Module):
"""
Embeds scalar timesteps into vector representations.
Each subject is running at a different clock speed, so we need to a subject-layer
"""
def __init__(self, hidden_size, subject_list, frequency_embedding_size=256):
super().__init__()
self.subject_list = subject_list
self.subject_layers = nn.ModuleDict()
self.frequency_embedding_size = frequency_embedding_size
for subject in subject_list:
self.subject_layers[subject] = nn.Linear(frequency_embedding_size, hidden_size, bias=True)
self.mlp = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t, subject):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.subject_layers[subject](t_freq)
t_emb = self.mlp(t_emb)
return t_emb
def build_time_emd(cfg: AutoConfig):
return SubjectTimeEmbed(
hidden_size=cfg.MODEL.BACKBONE_SMALL.T_DIM,
subject_list=cfg.DATASET.SUBJECT_LIST,
)
def get_shape(model, input_size, n=[5, 11]):
model = BACKBONES[model]()
model.eval()
model = model.cuda()
input = torch.randn(1, 3, input_size, input_size).cuda()
out_dict, cls_dict = model.get_intermediate_layers(input, n)
for k, v in out_dict.items():
print(k, v.shape, cls_dict[k].shape)
return model
BACKBONEC = {
'clip_vit_l': (224, [5, 11, 17, 23], [1024, 1024, 1024, 1024], [2048, 2048, 2048, 1024]),
'clip_vit_b': (224, [2, 5, 8, 11], [768, 768, 768, 768], [1536, 1536, 1536, 768]),
'clip_vit_s': (224, [2, 5, 8, 11], [768, 768, 768, 768], [1536, 1536, 1536, 768]),
'dinov2_vit_l': (224, [5, 11, 17, 23], [1024, 1024, 1024, 1024], [2048, 2048, 2048, 1024]),
'dinov2_vit_b': (224, [2, 5, 8, 11], [768, 768, 768, 768], [1536, 1536, 1536, 768]),
'dinov2_vit_s': (224, [2, 5, 8, 11], [384, 384, 384, 384], [768, 768, 768, 384]),
}