# %% import copy from functools import partial import os from typing import Any, Dict, List, Optional, Tuple, Union from einops import rearrange from filelock import FileLock import numpy as np import torch from torch import Tensor, nn import torch.nn.functional as F from config import AutoConfig from registry import Registry import math import torch.nn.functional as F BACKBONES = Registry() class LoRALinearLayer(nn.Module): def __init__(self, in_features, out_features, rank=4): super().__init__() if rank > min(in_features, out_features): raise ValueError( f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}" ) self.down = nn.Linear(in_features, rank, bias=False) self.up = nn.Linear(rank, out_features, bias=False) nn.init.normal_(self.down.weight, std=1 / rank) nn.init.zeros_(self.up.weight) def forward(self, hidden_states): orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) return up_hidden_states.to(orig_dtype) @property def weight(self): return self.up.weight @ self.down.weight @property def bias(self): return 0 class MonkeyLoRALinear(nn.Module): def __init__(self, fc: nn.Linear, rank=4, lora_scale=1): super().__init__() if rank > min(fc.in_features, fc.out_features): raise ValueError( f"LoRA rank {rank} must be less or equal than {min(fc.in_features, fc.out_features)}" ) if not isinstance(fc, nn.Linear): raise ValueError( f"MonkeyLoRALinear only support nn.Linear, but got {type(fc)}" ) self.fc = fc self.rank = rank self.lora_scale = lora_scale in_features = fc.in_features out_features = fc.out_features self.fc_lora = LoRALinearLayer(in_features, out_features, rank) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc(hidden_states) + self.lora_scale * self.fc_lora( hidden_states ) return hidden_states @property def weight(self): return self.fc.weight + self.lora_scale * self.fc_lora.weight @property def bias(self): return self.fc.bias class AdaLNZeroPatch(nn.Module): def __init__(self, embed_dim, d_c=64, adaln_scale=1.0): super().__init__() self.embed_dim = embed_dim self.d_c = d_c self.adaln_scale = adaln_scale # for condition (behavior data) self.adaLN_modulation = nn.Sequential( nn.Linear(self.d_c, 6 * self.embed_dim, bias=False), nn.Tanh(), ) nn.init.zeros_(self.adaLN_modulation[0].weight) def forward(self, c): ( shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, ) = ( self.adaLN_modulation(c) * self.adaln_scale ).chunk(6, dim=1) scale_msa = scale_msa + 1 gate_msa = gate_msa + 1 scale_mlp = scale_mlp + 1 gate_mlp = gate_mlp + 1 return shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp def maxavg_globalpool2d(x): out = torch.cat([F.adaptive_avg_pool2d(x, 1), F.adaptive_max_pool2d(x, 1)], dim=1) out = out.squeeze(-1).squeeze(-1) return out # from dinov2.models.vision_transformer import DinoVisionTransformer # from dinov2.layers.attention import MemEffAttention, Attention # from dinov2.layers.block import NestedTensorBlock, Block # from dinov2.layers.block import drop_add_residual_stochastic_depth class AdaLNDiNOBlock(nn.Module): def __init__(self, block, d_c=64, adaln_scale=1.0): super().__init__() self.block = block self.embed_dim = block.norm1.weight.shape[0] self.d_c = d_c self.adaLN = AdaLNZeroPatch(self.embed_dim, d_c=d_c, adaln_scale=adaln_scale) def forward(self, x, c: Optional[torch.Tensor] = None): # conditioning can be None bsz = x.shape[0] if c is None: c = torch.zeros(bsz, self.d_c, device=x.device, dtype=x.dtype) ( shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, ) = self.adaLN(c) def attn_residual_func(x: Tensor) -> Tensor: return self.block.ls1( self.block.attn( self.modulate(self.block.norm1(x), shift_msa, scale_msa) ) ) * gate_msa.unsqueeze(1) def ffn_residual_func(x: Tensor) -> Tensor: return self.block.ls2( self.block.mlp(self.modulate(self.block.norm2(x), shift_mlp, scale_mlp)) ) * gate_mlp.unsqueeze(1) # if self.block.training and self.block.sample_drop_ratio > 0.1: # # the overhead is compensated only for a drop path rate larger than 0.1 # x = drop_add_residual_stochastic_depth( # x, # residual_func=attn_residual_func, # sample_drop_ratio=self.block.sample_drop_ratio, # ) # x = drop_add_residual_stochastic_depth( # x, # residual_func=ffn_residual_func, # sample_drop_ratio=self.block.sample_drop_ratio, # ) # elif self.block.training and self.block.sample_drop_ratio > 0.0: # x = x + self.block.drop_path1(attn_residual_func(x)) # x = x + self.block.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2 # else: x = x + attn_residual_func(x) x = x + ffn_residual_func(x) return x @staticmethod def modulate(x, shift, scale): return x * scale.unsqueeze(1) + shift.unsqueeze(1) @BACKBONES.register("adaln_lora_dinov2_vit") class AdaLNLoRADiNOv2ViT(nn.Module): def __init__( self, lora_scale=1.0, rank=4, d_c=64, adaln_scale=1.0, ver='dinov2_vitl14', **kwargs ) -> None: super().__init__() vision_model = torch.hub.load("facebookresearch/dinov2", ver) self.vision_model = vision_model self.vision_model.requires_grad_(False) self.lora_scale = lora_scale self.rank = rank self.d_c = d_c self.adaln_scale = adaln_scale self.init_lora() def init_lora(self): self.vision_model = self.inject_lora_and_adaln_dinov2( self.vision_model, lora_scale=self.lora_scale, rank=self.rank, d_c=self.d_c, adaln_scale=self.adaln_scale, ) @staticmethod def inject_lora_and_adaln_dinov2( model, lora_scale=1.0, rank=4, d_c=64, adaln_scale=1.0 ): for _i in range(len(model.blocks)): block = model.blocks[_i] attn = block.attn block.attn.qkv = MonkeyLoRALinear( attn.qkv, rank=rank, lora_scale=lora_scale ) block.attn.proj = MonkeyLoRALinear( attn.proj, rank=rank, lora_scale=lora_scale ) block.mlp.fc1 = MonkeyLoRALinear( block.mlp.fc1, rank=rank, lora_scale=lora_scale ) block.mlp.fc2 = MonkeyLoRALinear( block.mlp.fc2, rank=rank, lora_scale=lora_scale ) model.blocks[_i] = AdaLNDiNOBlock(block, d_c=d_c, adaln_scale=adaln_scale) return model def forward(self, x: torch.Tensor) -> torch.Tensor: return self.vision_model(x) def get_intermediate_layers( self, x, n: List[str] = [0, 1, 2, 3], c: Optional[torch.Tensor] = None, reshape=True, masks=None, ): x = self.vision_model.prepare_tokens_with_masks(x, masks) output_dict = {} cls_dict = {} for i, blk in enumerate(self.vision_model.blocks): x = blk(x, c=c) if i not in n: continue saved_x = x.clone() if reshape: saved_x = saved_x[:, 1:, :] # remove cls token, [B, N, C] p = int(np.sqrt(saved_x.shape[1])) saved_x = rearrange(saved_x, "b (p1 p2) c -> b c p1 p2", p1=p, p2=p) output_dict[str(i)] = saved_x if i == len(self.vision_model.blocks) - 1: cls_dict[str(i)] = x[:, 0, :] # [B, C] else: cls_dict[str(i)] = maxavg_globalpool2d(saved_x) return output_dict, cls_dict @BACKBONES.register("dinov2_vit_l") def dinov2_vit_l(**kwargs): ver='dinov2_vitl14' return AdaLNLoRADiNOv2ViT(ver=ver, **kwargs) @BACKBONES.register("dinov2_vit_b") def dinov2_vit_b(**kwargs): ver='dinov2_vitb14' return AdaLNLoRADiNOv2ViT(ver=ver, **kwargs) @BACKBONES.register("dinov2_vit_s") def dinov2_vit_s(**kwargs): ver='dinov2_vits14' return AdaLNLoRADiNOv2ViT(ver=ver, **kwargs) def clean_state_dict(state_dict): new_state_dict = {} for k, v in state_dict.items(): if ".module." in k: k = k.replace(".module.", ".") new_state_dict[k] = v return new_state_dict def build_backbone(cfg: AutoConfig): # home = os.path.expanduser("~") # lock_path = os.path.join(home, ".cache", "download.lock") # with FileLock(lock_path): return BACKBONES[cfg.MODEL.BACKBONE.NAME]( lora_scale=cfg.MODEL.BACKBONE.LORA.SCALE, rank=cfg.MODEL.BACKBONE.LORA.RANK, d_c=cfg.MODEL.COND.DIM, adaln_scale=cfg.MODEL.BACKBONE.ADAPTIVE_LN.SCALE, ) def build_backbone_prev(cfg: AutoConfig): return BACKBONES[cfg.MODEL.BACKBONE_SMALL.NAME]( lora_scale=cfg.MODEL.BACKBONE_SMALL.LORA.SCALE, rank=cfg.MODEL.BACKBONE_SMALL.LORA.RANK, d_c=cfg.MODEL.COND.DIM, adaln_scale=cfg.MODEL.BACKBONE_SMALL.ADAPTIVE_LN.SCALE, ) class SubjectTimeEmbed(nn.Module): """ Embeds scalar timesteps into vector representations. Each subject is running at a different clock speed, so we need to a subject-layer """ def __init__(self, hidden_size, subject_list, frequency_embedding_size=256): super().__init__() self.subject_list = subject_list self.subject_layers = nn.ModuleDict() self.frequency_embedding_size = frequency_embedding_size for subject in subject_list: self.subject_layers[subject] = nn.Linear(frequency_embedding_size, hidden_size, bias=True) self.mlp = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t, subject): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.subject_layers[subject](t_freq) t_emb = self.mlp(t_emb) return t_emb def build_time_emd(cfg: AutoConfig): return SubjectTimeEmbed( hidden_size=cfg.MODEL.BACKBONE_SMALL.T_DIM, subject_list=cfg.DATASET.SUBJECT_LIST, ) def get_shape(model, input_size, n=[5, 11]): model = BACKBONES[model]() model.eval() model = model.cuda() input = torch.randn(1, 3, input_size, input_size).cuda() out_dict, cls_dict = model.get_intermediate_layers(input, n) for k, v in out_dict.items(): print(k, v.shape, cls_dict[k].shape) return model BACKBONEC = { 'clip_vit_l': (224, [5, 11, 17, 23], [1024, 1024, 1024, 1024], [2048, 2048, 2048, 1024]), 'clip_vit_b': (224, [2, 5, 8, 11], [768, 768, 768, 768], [1536, 1536, 1536, 768]), 'clip_vit_s': (224, [2, 5, 8, 11], [768, 768, 768, 768], [1536, 1536, 1536, 768]), 'dinov2_vit_l': (224, [5, 11, 17, 23], [1024, 1024, 1024, 1024], [2048, 2048, 2048, 1024]), 'dinov2_vit_b': (224, [2, 5, 8, 11], [768, 768, 768, 768], [1536, 1536, 1536, 768]), 'dinov2_vit_s': (224, [2, 5, 8, 11], [384, 384, 384, 384], [768, 768, 768, 384]), }