File size: 13,124 Bytes
ec378c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# %%
import copy
from functools import partial
import os
from typing import Any, Dict, List, Optional, Tuple, Union
from einops import rearrange
from filelock import FileLock
import numpy as np
import torch
from torch import Tensor, nn
import torch.nn.functional as F
from config import AutoConfig
from registry import Registry
import math
import torch.nn.functional as F
BACKBONES = Registry()
class LoRALinearLayer(nn.Module):
def __init__(self, in_features, out_features, rank=4):
super().__init__()
if rank > min(in_features, out_features):
raise ValueError(
f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}"
)
self.down = nn.Linear(in_features, rank, bias=False)
self.up = nn.Linear(rank, out_features, bias=False)
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
def forward(self, hidden_states):
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
return up_hidden_states.to(orig_dtype)
@property
def weight(self):
return self.up.weight @ self.down.weight
@property
def bias(self):
return 0
class MonkeyLoRALinear(nn.Module):
def __init__(self, fc: nn.Linear, rank=4, lora_scale=1):
super().__init__()
if rank > min(fc.in_features, fc.out_features):
raise ValueError(
f"LoRA rank {rank} must be less or equal than {min(fc.in_features, fc.out_features)}"
)
if not isinstance(fc, nn.Linear):
raise ValueError(
f"MonkeyLoRALinear only support nn.Linear, but got {type(fc)}"
)
self.fc = fc
self.rank = rank
self.lora_scale = lora_scale
in_features = fc.in_features
out_features = fc.out_features
self.fc_lora = LoRALinearLayer(in_features, out_features, rank)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc(hidden_states) + self.lora_scale * self.fc_lora(
hidden_states
)
return hidden_states
@property
def weight(self):
return self.fc.weight + self.lora_scale * self.fc_lora.weight
@property
def bias(self):
return self.fc.bias
class AdaLNZeroPatch(nn.Module):
def __init__(self, embed_dim, d_c=64, adaln_scale=1.0):
super().__init__()
self.embed_dim = embed_dim
self.d_c = d_c
self.adaln_scale = adaln_scale
# for condition (behavior data)
self.adaLN_modulation = nn.Sequential(
nn.Linear(self.d_c, 6 * self.embed_dim, bias=False),
nn.Tanh(),
)
nn.init.zeros_(self.adaLN_modulation[0].weight)
def forward(self, c):
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
) = (
self.adaLN_modulation(c) * self.adaln_scale
).chunk(6, dim=1)
scale_msa = scale_msa + 1
gate_msa = gate_msa + 1
scale_mlp = scale_mlp + 1
gate_mlp = gate_mlp + 1
return shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp
def maxavg_globalpool2d(x):
out = torch.cat([F.adaptive_avg_pool2d(x, 1), F.adaptive_max_pool2d(x, 1)], dim=1)
out = out.squeeze(-1).squeeze(-1)
return out
# from dinov2.models.vision_transformer import DinoVisionTransformer
# from dinov2.layers.attention import MemEffAttention, Attention
# from dinov2.layers.block import NestedTensorBlock, Block
# from dinov2.layers.block import drop_add_residual_stochastic_depth
class AdaLNDiNOBlock(nn.Module):
def __init__(self, block, d_c=64, adaln_scale=1.0):
super().__init__()
self.block = block
self.embed_dim = block.norm1.weight.shape[0]
self.d_c = d_c
self.adaLN = AdaLNZeroPatch(self.embed_dim, d_c=d_c, adaln_scale=adaln_scale)
def forward(self, x, c: Optional[torch.Tensor] = None):
# conditioning can be None
bsz = x.shape[0]
if c is None:
c = torch.zeros(bsz, self.d_c, device=x.device, dtype=x.dtype)
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
) = self.adaLN(c)
def attn_residual_func(x: Tensor) -> Tensor:
return self.block.ls1(
self.block.attn(
self.modulate(self.block.norm1(x), shift_msa, scale_msa)
)
) * gate_msa.unsqueeze(1)
def ffn_residual_func(x: Tensor) -> Tensor:
return self.block.ls2(
self.block.mlp(self.modulate(self.block.norm2(x), shift_mlp, scale_mlp))
) * gate_mlp.unsqueeze(1)
# if self.block.training and self.block.sample_drop_ratio > 0.1:
# # the overhead is compensated only for a drop path rate larger than 0.1
# x = drop_add_residual_stochastic_depth(
# x,
# residual_func=attn_residual_func,
# sample_drop_ratio=self.block.sample_drop_ratio,
# )
# x = drop_add_residual_stochastic_depth(
# x,
# residual_func=ffn_residual_func,
# sample_drop_ratio=self.block.sample_drop_ratio,
# )
# elif self.block.training and self.block.sample_drop_ratio > 0.0:
# x = x + self.block.drop_path1(attn_residual_func(x))
# x = x + self.block.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
# else:
x = x + attn_residual_func(x)
x = x + ffn_residual_func(x)
return x
@staticmethod
def modulate(x, shift, scale):
return x * scale.unsqueeze(1) + shift.unsqueeze(1)
@BACKBONES.register("adaln_lora_dinov2_vit")
class AdaLNLoRADiNOv2ViT(nn.Module):
def __init__(
self, lora_scale=1.0, rank=4, d_c=64, adaln_scale=1.0, ver='dinov2_vitl14', **kwargs
) -> None:
super().__init__()
vision_model = torch.hub.load("facebookresearch/dinov2", ver)
self.vision_model = vision_model
self.vision_model.requires_grad_(False)
self.lora_scale = lora_scale
self.rank = rank
self.d_c = d_c
self.adaln_scale = adaln_scale
self.init_lora()
def init_lora(self):
self.vision_model = self.inject_lora_and_adaln_dinov2(
self.vision_model,
lora_scale=self.lora_scale,
rank=self.rank,
d_c=self.d_c,
adaln_scale=self.adaln_scale,
)
@staticmethod
def inject_lora_and_adaln_dinov2(
model, lora_scale=1.0, rank=4, d_c=64, adaln_scale=1.0
):
for _i in range(len(model.blocks)):
block = model.blocks[_i]
attn = block.attn
block.attn.qkv = MonkeyLoRALinear(
attn.qkv, rank=rank, lora_scale=lora_scale
)
block.attn.proj = MonkeyLoRALinear(
attn.proj, rank=rank, lora_scale=lora_scale
)
block.mlp.fc1 = MonkeyLoRALinear(
block.mlp.fc1, rank=rank, lora_scale=lora_scale
)
block.mlp.fc2 = MonkeyLoRALinear(
block.mlp.fc2, rank=rank, lora_scale=lora_scale
)
model.blocks[_i] = AdaLNDiNOBlock(block, d_c=d_c, adaln_scale=adaln_scale)
return model
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.vision_model(x)
def get_intermediate_layers(
self,
x,
n: List[str] = [0, 1, 2, 3],
c: Optional[torch.Tensor] = None,
reshape=True,
masks=None,
):
x = self.vision_model.prepare_tokens_with_masks(x, masks)
output_dict = {}
cls_dict = {}
for i, blk in enumerate(self.vision_model.blocks):
x = blk(x, c=c)
if i not in n:
continue
saved_x = x.clone()
if reshape:
saved_x = saved_x[:, 1:, :] # remove cls token, [B, N, C]
p = int(np.sqrt(saved_x.shape[1]))
saved_x = rearrange(saved_x, "b (p1 p2) c -> b c p1 p2", p1=p, p2=p)
output_dict[str(i)] = saved_x
if i == len(self.vision_model.blocks) - 1:
cls_dict[str(i)] = x[:, 0, :] # [B, C]
else:
cls_dict[str(i)] = maxavg_globalpool2d(saved_x)
return output_dict, cls_dict
@BACKBONES.register("dinov2_vit_l")
def dinov2_vit_l(**kwargs):
ver='dinov2_vitl14'
return AdaLNLoRADiNOv2ViT(ver=ver, **kwargs)
@BACKBONES.register("dinov2_vit_b")
def dinov2_vit_b(**kwargs):
ver='dinov2_vitb14'
return AdaLNLoRADiNOv2ViT(ver=ver, **kwargs)
@BACKBONES.register("dinov2_vit_s")
def dinov2_vit_s(**kwargs):
ver='dinov2_vits14'
return AdaLNLoRADiNOv2ViT(ver=ver, **kwargs)
def clean_state_dict(state_dict):
new_state_dict = {}
for k, v in state_dict.items():
if ".module." in k:
k = k.replace(".module.", ".")
new_state_dict[k] = v
return new_state_dict
def build_backbone(cfg: AutoConfig):
# home = os.path.expanduser("~")
# lock_path = os.path.join(home, ".cache", "download.lock")
# with FileLock(lock_path):
return BACKBONES[cfg.MODEL.BACKBONE.NAME](
lora_scale=cfg.MODEL.BACKBONE.LORA.SCALE,
rank=cfg.MODEL.BACKBONE.LORA.RANK,
d_c=cfg.MODEL.COND.DIM,
adaln_scale=cfg.MODEL.BACKBONE.ADAPTIVE_LN.SCALE,
)
def build_backbone_prev(cfg: AutoConfig):
return BACKBONES[cfg.MODEL.BACKBONE_SMALL.NAME](
lora_scale=cfg.MODEL.BACKBONE_SMALL.LORA.SCALE,
rank=cfg.MODEL.BACKBONE_SMALL.LORA.RANK,
d_c=cfg.MODEL.COND.DIM,
adaln_scale=cfg.MODEL.BACKBONE_SMALL.ADAPTIVE_LN.SCALE,
)
class SubjectTimeEmbed(nn.Module):
"""
Embeds scalar timesteps into vector representations.
Each subject is running at a different clock speed, so we need to a subject-layer
"""
def __init__(self, hidden_size, subject_list, frequency_embedding_size=256):
super().__init__()
self.subject_list = subject_list
self.subject_layers = nn.ModuleDict()
self.frequency_embedding_size = frequency_embedding_size
for subject in subject_list:
self.subject_layers[subject] = nn.Linear(frequency_embedding_size, hidden_size, bias=True)
self.mlp = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t, subject):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.subject_layers[subject](t_freq)
t_emb = self.mlp(t_emb)
return t_emb
def build_time_emd(cfg: AutoConfig):
return SubjectTimeEmbed(
hidden_size=cfg.MODEL.BACKBONE_SMALL.T_DIM,
subject_list=cfg.DATASET.SUBJECT_LIST,
)
def get_shape(model, input_size, n=[5, 11]):
model = BACKBONES[model]()
model.eval()
model = model.cuda()
input = torch.randn(1, 3, input_size, input_size).cuda()
out_dict, cls_dict = model.get_intermediate_layers(input, n)
for k, v in out_dict.items():
print(k, v.shape, cls_dict[k].shape)
return model
BACKBONEC = {
'clip_vit_l': (224, [5, 11, 17, 23], [1024, 1024, 1024, 1024], [2048, 2048, 2048, 1024]),
'clip_vit_b': (224, [2, 5, 8, 11], [768, 768, 768, 768], [1536, 1536, 1536, 768]),
'clip_vit_s': (224, [2, 5, 8, 11], [768, 768, 768, 768], [1536, 1536, 1536, 768]),
'dinov2_vit_l': (224, [5, 11, 17, 23], [1024, 1024, 1024, 1024], [2048, 2048, 2048, 1024]),
'dinov2_vit_b': (224, [2, 5, 8, 11], [768, 768, 768, 768], [1536, 1536, 1536, 768]),
'dinov2_vit_s': (224, [2, 5, 8, 11], [384, 384, 384, 384], [768, 768, 768, 384]),
} |