hoanbklucky's picture
End of training
7e583e2 verified
|
raw
history blame
2.32 kB
---
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-small-imagenet1k-1-layer
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dinov2-small-imagenet1k-1-layer-finetuned-noh
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dinov2-small-imagenet1k-1-layer-finetuned-noh
This model is a fine-tuned version of [facebook/dinov2-small-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-small-imagenet1k-1-layer) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3058
- Accuracy: 0.8982
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.5315 | 1.0 | 23 | 1.2674 | 0.2479 |
| 0.4629 | 2.0 | 46 | 0.5134 | 0.7882 |
| 0.4368 | 3.0 | 69 | 0.3058 | 0.8982 |
| 0.4123 | 4.0 | 92 | 0.4148 | 0.8046 |
| 0.3301 | 5.0 | 115 | 0.3520 | 0.8736 |
| 0.2907 | 6.0 | 138 | 0.4415 | 0.8440 |
| 0.2809 | 7.0 | 161 | 0.5786 | 0.7521 |
| 0.2243 | 8.0 | 184 | 0.4724 | 0.8752 |
| 0.1968 | 9.0 | 207 | 0.5452 | 0.8703 |
| 0.1601 | 9.5778 | 220 | 0.5386 | 0.8440 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1
- Datasets 2.19.1
- Tokenizers 0.21.0