hoanbklucky's picture
End of training
7e583e2 verified
|
raw
history blame
2.32 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-small-imagenet1k-1-layer
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: dinov2-small-imagenet1k-1-layer-finetuned-noh
    results: []

dinov2-small-imagenet1k-1-layer-finetuned-noh

This model is a fine-tuned version of facebook/dinov2-small-imagenet1k-1-layer on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3058
  • Accuracy: 0.8982

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5315 1.0 23 1.2674 0.2479
0.4629 2.0 46 0.5134 0.7882
0.4368 3.0 69 0.3058 0.8982
0.4123 4.0 92 0.4148 0.8046
0.3301 5.0 115 0.3520 0.8736
0.2907 6.0 138 0.4415 0.8440
0.2809 7.0 161 0.5786 0.7521
0.2243 8.0 184 0.4724 0.8752
0.1968 9.0 207 0.5452 0.8703
0.1601 9.5778 220 0.5386 0.8440

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1
  • Datasets 2.19.1
  • Tokenizers 0.21.0