llama3_8b_sft_mc / README.md
hlillemark's picture
End of training
c294c92 verified
metadata
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
  - llama-factory
  - full
  - generated_from_trainer
model-index:
  - name: sft_mc
    results: []

sft_mc

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the identity and the data_mc datasets. It achieves the following results on the evaluation set:

  • Loss: 2.3011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss
1.0534 0.7463 50 1.2635
0.8118 1.4925 100 1.3805
0.3889 2.2388 150 1.6007
0.4361 2.9851 200 1.5327
0.265 3.7313 250 1.6067
0.1347 4.4776 300 1.8177
0.0857 5.2239 350 1.9771
0.0709 5.9701 400 1.9008
0.0474 6.7164 450 2.1317
0.0286 7.4627 500 2.2199
0.0091 8.2090 550 2.2086
0.0054 8.9552 600 2.2865
0.0038 9.7015 650 2.3016

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0