sft_mc

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the identity and the data_mc datasets. It achieves the following results on the evaluation set:

  • Loss: 2.3011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss
1.0534 0.7463 50 1.2635
0.8118 1.4925 100 1.3805
0.3889 2.2388 150 1.6007
0.4361 2.9851 200 1.5327
0.265 3.7313 250 1.6067
0.1347 4.4776 300 1.8177
0.0857 5.2239 350 1.9771
0.0709 5.9701 400 1.9008
0.0474 6.7164 450 2.1317
0.0286 7.4627 500 2.2199
0.0091 8.2090 550 2.2086
0.0054 8.9552 600 2.2865
0.0038 9.7015 650 2.3016

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
28
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for hlillemark/llama3_8b_sft_mc

Finetuned
(564)
this model