hkivancoral's picture
End of training
a80e23f
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_small_rms_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8848080133555927

smids_1x_deit_small_rms_00001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7203
  • Accuracy: 0.8848

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4024 1.0 76 0.3457 0.8598
0.2939 2.0 152 0.3056 0.8765
0.1494 3.0 228 0.3010 0.8815
0.1219 4.0 304 0.3026 0.8848
0.0709 5.0 380 0.3230 0.8881
0.0265 6.0 456 0.3473 0.8915
0.0053 7.0 532 0.4250 0.8815
0.0086 8.0 608 0.4355 0.8848
0.0119 9.0 684 0.4635 0.8865
0.0011 10.0 760 0.4824 0.8932
0.0255 11.0 836 0.5139 0.8831
0.0006 12.0 912 0.5793 0.8815
0.0183 13.0 988 0.5403 0.8848
0.0037 14.0 1064 0.5951 0.8848
0.024 15.0 1140 0.5951 0.8815
0.0002 16.0 1216 0.6061 0.8798
0.0001 17.0 1292 0.5992 0.8948
0.0157 18.0 1368 0.6206 0.8848
0.0002 19.0 1444 0.6514 0.8881
0.0058 20.0 1520 0.6656 0.8798
0.0096 21.0 1596 0.6589 0.8915
0.0045 22.0 1672 0.6509 0.8848
0.0001 23.0 1748 0.6180 0.8881
0.0001 24.0 1824 0.6676 0.8765
0.0077 25.0 1900 0.6271 0.8831
0.0032 26.0 1976 0.7135 0.8848
0.0043 27.0 2052 0.7062 0.8765
0.0034 28.0 2128 0.7064 0.8781
0.0062 29.0 2204 0.6764 0.8781
0.0001 30.0 2280 0.6847 0.8831
0.006 31.0 2356 0.6868 0.8865
0.009 32.0 2432 0.7122 0.8881
0.0 33.0 2508 0.7011 0.8865
0.0 34.0 2584 0.7102 0.8881
0.0121 35.0 2660 0.7023 0.8881
0.0034 36.0 2736 0.7188 0.8765
0.0064 37.0 2812 0.7029 0.8848
0.0001 38.0 2888 0.7098 0.8798
0.0031 39.0 2964 0.7171 0.8815
0.0 40.0 3040 0.7137 0.8815
0.0029 41.0 3116 0.7143 0.8815
0.0 42.0 3192 0.7224 0.8815
0.0048 43.0 3268 0.7157 0.8831
0.0 44.0 3344 0.7190 0.8848
0.0 45.0 3420 0.7200 0.8848
0.0 46.0 3496 0.7204 0.8848
0.0 47.0 3572 0.7209 0.8848
0.0024 48.0 3648 0.7205 0.8848
0.0 49.0 3724 0.7204 0.8848
0.0 50.0 3800 0.7203 0.8848

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0