File size: 4,818 Bytes
a80e23f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_small_rms_00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8848080133555927
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smids_1x_deit_small_rms_00001_fold1
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7203
- Accuracy: 0.8848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4024 | 1.0 | 76 | 0.3457 | 0.8598 |
| 0.2939 | 2.0 | 152 | 0.3056 | 0.8765 |
| 0.1494 | 3.0 | 228 | 0.3010 | 0.8815 |
| 0.1219 | 4.0 | 304 | 0.3026 | 0.8848 |
| 0.0709 | 5.0 | 380 | 0.3230 | 0.8881 |
| 0.0265 | 6.0 | 456 | 0.3473 | 0.8915 |
| 0.0053 | 7.0 | 532 | 0.4250 | 0.8815 |
| 0.0086 | 8.0 | 608 | 0.4355 | 0.8848 |
| 0.0119 | 9.0 | 684 | 0.4635 | 0.8865 |
| 0.0011 | 10.0 | 760 | 0.4824 | 0.8932 |
| 0.0255 | 11.0 | 836 | 0.5139 | 0.8831 |
| 0.0006 | 12.0 | 912 | 0.5793 | 0.8815 |
| 0.0183 | 13.0 | 988 | 0.5403 | 0.8848 |
| 0.0037 | 14.0 | 1064 | 0.5951 | 0.8848 |
| 0.024 | 15.0 | 1140 | 0.5951 | 0.8815 |
| 0.0002 | 16.0 | 1216 | 0.6061 | 0.8798 |
| 0.0001 | 17.0 | 1292 | 0.5992 | 0.8948 |
| 0.0157 | 18.0 | 1368 | 0.6206 | 0.8848 |
| 0.0002 | 19.0 | 1444 | 0.6514 | 0.8881 |
| 0.0058 | 20.0 | 1520 | 0.6656 | 0.8798 |
| 0.0096 | 21.0 | 1596 | 0.6589 | 0.8915 |
| 0.0045 | 22.0 | 1672 | 0.6509 | 0.8848 |
| 0.0001 | 23.0 | 1748 | 0.6180 | 0.8881 |
| 0.0001 | 24.0 | 1824 | 0.6676 | 0.8765 |
| 0.0077 | 25.0 | 1900 | 0.6271 | 0.8831 |
| 0.0032 | 26.0 | 1976 | 0.7135 | 0.8848 |
| 0.0043 | 27.0 | 2052 | 0.7062 | 0.8765 |
| 0.0034 | 28.0 | 2128 | 0.7064 | 0.8781 |
| 0.0062 | 29.0 | 2204 | 0.6764 | 0.8781 |
| 0.0001 | 30.0 | 2280 | 0.6847 | 0.8831 |
| 0.006 | 31.0 | 2356 | 0.6868 | 0.8865 |
| 0.009 | 32.0 | 2432 | 0.7122 | 0.8881 |
| 0.0 | 33.0 | 2508 | 0.7011 | 0.8865 |
| 0.0 | 34.0 | 2584 | 0.7102 | 0.8881 |
| 0.0121 | 35.0 | 2660 | 0.7023 | 0.8881 |
| 0.0034 | 36.0 | 2736 | 0.7188 | 0.8765 |
| 0.0064 | 37.0 | 2812 | 0.7029 | 0.8848 |
| 0.0001 | 38.0 | 2888 | 0.7098 | 0.8798 |
| 0.0031 | 39.0 | 2964 | 0.7171 | 0.8815 |
| 0.0 | 40.0 | 3040 | 0.7137 | 0.8815 |
| 0.0029 | 41.0 | 3116 | 0.7143 | 0.8815 |
| 0.0 | 42.0 | 3192 | 0.7224 | 0.8815 |
| 0.0048 | 43.0 | 3268 | 0.7157 | 0.8831 |
| 0.0 | 44.0 | 3344 | 0.7190 | 0.8848 |
| 0.0 | 45.0 | 3420 | 0.7200 | 0.8848 |
| 0.0 | 46.0 | 3496 | 0.7204 | 0.8848 |
| 0.0 | 47.0 | 3572 | 0.7209 | 0.8848 |
| 0.0024 | 48.0 | 3648 | 0.7205 | 0.8848 |
| 0.0 | 49.0 | 3724 | 0.7204 | 0.8848 |
| 0.0 | 50.0 | 3800 | 0.7203 | 0.8848 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|