Regression_bert_1 / README.md
helling100's picture
Upload TFDistilBertForSequenceClassification
3fc718a
|
raw
history blame
3.66 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: Regression_bert_1
    results: []

Regression_bert_1

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2128
  • Train Mae: 0.2623
  • Train Mse: 0.1098
  • Train Accuracy: 0.8615
  • Train R2-score: 0.8081
  • Validation Loss: 0.1657
  • Validation Mae: 0.3472
  • Validation Mse: 0.1644
  • Validation Accuracy: 0.7027
  • Validation R2-score: 0.8599
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Mae Train Mse Train Accuracy Train R2-score Validation Loss Validation Mae Validation Mse Validation Accuracy Validation R2-score Epoch
0.6256 0.3353 0.1579 0.7615 0.4024 0.2916 0.4907 0.2909 0.3243 0.7810 0
0.3639 0.3290 0.1605 0.7077 0.3874 0.3009 0.5004 0.3003 0.3243 0.7733 1
0.1835 0.2940 0.1415 0.6615 0.7274 0.2086 0.3992 0.2075 0.3243 0.8417 2
0.1707 0.2955 0.1462 0.5846 0.7594 0.1872 0.3705 0.1859 0.3243 0.8547 3
0.1628 0.2740 0.1251 0.8077 0.7588 0.1867 0.3707 0.1854 0.4595 0.8547 4
0.1541 0.2695 0.1221 0.7769 0.7405 0.1851 0.3696 0.1839 0.5946 0.8549 5
0.2239 0.2983 0.1388 0.7154 0.7428 0.2561 0.4564 0.2552 0.3243 0.7987 6
0.1998 0.2815 0.1295 0.7538 0.7537 0.1979 0.3872 0.1968 0.3514 0.8473 7
0.1682 0.2743 0.1260 0.7692 0.7532 0.1515 0.3350 0.1500 0.9730 0.8691 8
0.2128 0.2623 0.1098 0.8615 0.8081 0.1657 0.3472 0.1644 0.7027 0.8599 9

Framework versions

  • Transformers 4.27.3
  • TensorFlow 2.11.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2