Regression_bert_1 / README.md
helling100's picture
Upload TFDistilBertForSequenceClassification
249b497
|
raw
history blame
3.14 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: Regression_bert_1
    results: []

Regression_bert_1

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1363
  • Train Mae: 0.2288
  • Train Mse: 0.0928
  • Train R2-score: 0.8065
  • Validation Loss: 0.0994
  • Validation Mae: 0.2297
  • Validation Mse: 0.0947
  • Validation R2-score: 0.8577
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Mae Train Mse Train R2-score Validation Loss Validation Mae Validation Mse Validation R2-score Epoch
0.4890 0.3421 0.1734 0.1995 0.1833 0.3662 0.1820 0.8574 0
0.1771 0.3049 0.1526 0.7380 0.1715 0.3553 0.1701 0.8642 1
0.1563 0.2820 0.1337 0.7278 0.1823 0.3662 0.1810 0.8577 2
0.1578 0.2739 0.1288 0.7954 0.1689 0.3535 0.1674 0.8641 3
0.2301 0.3034 0.1383 0.7186 0.1158 0.3132 0.1136 0.8866 4
0.2067 0.2768 0.1203 0.6568 0.1462 0.3375 0.1445 0.8772 5
0.1631 0.2726 0.1200 0.7418 0.1646 0.3473 0.1632 0.8659 6
0.1689 0.2843 0.1269 0.4797 0.0993 0.2797 0.0972 0.8961 7
0.1756 0.2115 0.0726 0.8657 0.1047 0.2537 0.1027 0.8923 8
0.1363 0.2288 0.0928 0.8065 0.0994 0.2297 0.0947 0.8577 9

Framework versions

  • Transformers 4.27.3
  • TensorFlow 2.11.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2