haryoaw's picture
Upload tokenizer
8e0a53f verified
|
raw
history blame
4.98 kB
metadata
base_model: microsoft/mdeberta-v3-base
datasets:
  - tweet_sentiment_multilingual
library_name: transformers
license: mit
metrics:
  - accuracy
  - f1
tags:
  - generated_from_trainer
model-index:
  - name: >-
      scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
    results: []

scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 5.0035
  • Accuracy: 0.5625
  • F1: 0.5617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.021 1.0870 500 1.0027 0.5409 0.5367
0.8432 2.1739 1000 1.0327 0.5814 0.5820
0.6715 3.2609 1500 1.1554 0.5822 0.5778
0.48 4.3478 2000 1.4182 0.5613 0.5573
0.3384 5.4348 2500 1.8214 0.5567 0.5573
0.2309 6.5217 3000 1.8385 0.5502 0.5445
0.1737 7.6087 3500 2.0368 0.5444 0.5440
0.1324 8.6957 4000 2.3667 0.5424 0.5414
0.1132 9.7826 4500 2.0414 0.5509 0.5486
0.1058 10.8696 5000 2.5673 0.5509 0.5491
0.0833 11.9565 5500 2.7424 0.5513 0.5509
0.0662 13.0435 6000 3.2582 0.5544 0.5529
0.0664 14.1304 6500 3.5005 0.5556 0.5521
0.0532 15.2174 7000 3.0692 0.5502 0.5509
0.0494 16.3043 7500 3.1700 0.5478 0.5487
0.0485 17.3913 8000 3.8948 0.5382 0.5377
0.0359 18.4783 8500 3.5655 0.5583 0.5570
0.0322 19.5652 9000 4.0121 0.5583 0.5547
0.0294 20.6522 9500 3.5540 0.5579 0.5582
0.026 21.7391 10000 4.0054 0.5525 0.5535
0.0305 22.8261 10500 3.8289 0.5498 0.5453
0.0232 23.9130 11000 4.4012 0.5556 0.5558
0.0209 25.0 11500 4.0916 0.5559 0.5504
0.0224 26.0870 12000 4.3087 0.5586 0.5583
0.0192 27.1739 12500 4.0617 0.5467 0.5474
0.0198 28.2609 13000 4.1456 0.5567 0.5555
0.0148 29.3478 13500 4.5847 0.5505 0.5519
0.016 30.4348 14000 4.3128 0.5494 0.5501
0.0145 31.5217 14500 4.4021 0.5505 0.5500
0.0146 32.6087 15000 4.3393 0.5509 0.5506
0.0089 33.6957 15500 4.4852 0.5486 0.5499
0.0089 34.7826 16000 4.8487 0.5475 0.5487
0.0085 35.8696 16500 4.8052 0.5567 0.5573
0.0077 36.9565 17000 4.6518 0.5502 0.5484
0.0095 38.0435 17500 4.2742 0.5567 0.5554
0.0054 39.1304 18000 4.7804 0.5548 0.5520
0.0074 40.2174 18500 4.6940 0.5540 0.5516
0.0053 41.3043 19000 4.6543 0.5590 0.5581
0.003 42.3913 19500 5.0637 0.5563 0.5572
0.0044 43.4783 20000 4.7918 0.5652 0.5657
0.0053 44.5652 20500 4.7492 0.5625 0.5604
0.0031 45.6522 21000 4.8642 0.5571 0.5567
0.0026 46.7391 21500 4.9137 0.5617 0.5614
0.0025 47.8261 22000 4.8985 0.5629 0.5626
0.0007 48.9130 22500 4.9890 0.5633 0.5621
0.0027 50.0 23000 5.0035 0.5625 0.5617

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1