File size: 4,979 Bytes
bc6440a
6e94e20
bc6440a
 
8e0a53f
 
bc6440a
 
 
8e0a53f
 
bc6440a
 
1e85a2d
bc6440a
 
 
 
 
 
 
6e94e20
bc6440a
0eae183
 
 
bc6440a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eae183
bc6440a
 
 
 
 
 
6e94e20
 
0eae183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc6440a
 
 
 
6e94e20
bc6440a
 
6e94e20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
base_model: microsoft/mdeberta-v3-base
datasets:
- tweet_sentiment_multilingual
library_name: transformers
license: mit
metrics:
- accuracy
- f1
tags:
- generated_from_trainer
model-index:
- name: scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tweet_sentiment_multilingual dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0035
- Accuracy: 0.5625
- F1: 0.5617

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:------:|
| 1.021         | 1.0870  | 500   | 1.0027          | 0.5409   | 0.5367 |
| 0.8432        | 2.1739  | 1000  | 1.0327          | 0.5814   | 0.5820 |
| 0.6715        | 3.2609  | 1500  | 1.1554          | 0.5822   | 0.5778 |
| 0.48          | 4.3478  | 2000  | 1.4182          | 0.5613   | 0.5573 |
| 0.3384        | 5.4348  | 2500  | 1.8214          | 0.5567   | 0.5573 |
| 0.2309        | 6.5217  | 3000  | 1.8385          | 0.5502   | 0.5445 |
| 0.1737        | 7.6087  | 3500  | 2.0368          | 0.5444   | 0.5440 |
| 0.1324        | 8.6957  | 4000  | 2.3667          | 0.5424   | 0.5414 |
| 0.1132        | 9.7826  | 4500  | 2.0414          | 0.5509   | 0.5486 |
| 0.1058        | 10.8696 | 5000  | 2.5673          | 0.5509   | 0.5491 |
| 0.0833        | 11.9565 | 5500  | 2.7424          | 0.5513   | 0.5509 |
| 0.0662        | 13.0435 | 6000  | 3.2582          | 0.5544   | 0.5529 |
| 0.0664        | 14.1304 | 6500  | 3.5005          | 0.5556   | 0.5521 |
| 0.0532        | 15.2174 | 7000  | 3.0692          | 0.5502   | 0.5509 |
| 0.0494        | 16.3043 | 7500  | 3.1700          | 0.5478   | 0.5487 |
| 0.0485        | 17.3913 | 8000  | 3.8948          | 0.5382   | 0.5377 |
| 0.0359        | 18.4783 | 8500  | 3.5655          | 0.5583   | 0.5570 |
| 0.0322        | 19.5652 | 9000  | 4.0121          | 0.5583   | 0.5547 |
| 0.0294        | 20.6522 | 9500  | 3.5540          | 0.5579   | 0.5582 |
| 0.026         | 21.7391 | 10000 | 4.0054          | 0.5525   | 0.5535 |
| 0.0305        | 22.8261 | 10500 | 3.8289          | 0.5498   | 0.5453 |
| 0.0232        | 23.9130 | 11000 | 4.4012          | 0.5556   | 0.5558 |
| 0.0209        | 25.0    | 11500 | 4.0916          | 0.5559   | 0.5504 |
| 0.0224        | 26.0870 | 12000 | 4.3087          | 0.5586   | 0.5583 |
| 0.0192        | 27.1739 | 12500 | 4.0617          | 0.5467   | 0.5474 |
| 0.0198        | 28.2609 | 13000 | 4.1456          | 0.5567   | 0.5555 |
| 0.0148        | 29.3478 | 13500 | 4.5847          | 0.5505   | 0.5519 |
| 0.016         | 30.4348 | 14000 | 4.3128          | 0.5494   | 0.5501 |
| 0.0145        | 31.5217 | 14500 | 4.4021          | 0.5505   | 0.5500 |
| 0.0146        | 32.6087 | 15000 | 4.3393          | 0.5509   | 0.5506 |
| 0.0089        | 33.6957 | 15500 | 4.4852          | 0.5486   | 0.5499 |
| 0.0089        | 34.7826 | 16000 | 4.8487          | 0.5475   | 0.5487 |
| 0.0085        | 35.8696 | 16500 | 4.8052          | 0.5567   | 0.5573 |
| 0.0077        | 36.9565 | 17000 | 4.6518          | 0.5502   | 0.5484 |
| 0.0095        | 38.0435 | 17500 | 4.2742          | 0.5567   | 0.5554 |
| 0.0054        | 39.1304 | 18000 | 4.7804          | 0.5548   | 0.5520 |
| 0.0074        | 40.2174 | 18500 | 4.6940          | 0.5540   | 0.5516 |
| 0.0053        | 41.3043 | 19000 | 4.6543          | 0.5590   | 0.5581 |
| 0.003         | 42.3913 | 19500 | 5.0637          | 0.5563   | 0.5572 |
| 0.0044        | 43.4783 | 20000 | 4.7918          | 0.5652   | 0.5657 |
| 0.0053        | 44.5652 | 20500 | 4.7492          | 0.5625   | 0.5604 |
| 0.0031        | 45.6522 | 21000 | 4.8642          | 0.5571   | 0.5567 |
| 0.0026        | 46.7391 | 21500 | 4.9137          | 0.5617   | 0.5614 |
| 0.0025        | 47.8261 | 22000 | 4.8985          | 0.5629   | 0.5626 |
| 0.0007        | 48.9130 | 22500 | 4.9890          | 0.5633   | 0.5621 |
| 0.0027        | 50.0    | 23000 | 5.0035          | 0.5625   | 0.5617 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1