haryoaw commited on
Commit
bc6440a
·
verified ·
1 Parent(s): 135c658

Initial Commit

Browse files
Files changed (4) hide show
  1. README.md +125 -0
  2. config.json +39 -0
  3. pytorch_model.bin +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlm-roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - tweet_sentiment_multilingual
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: tweet_sentiment_multilingual
19
+ type: tweet_sentiment_multilingual
20
+ config: all
21
+ split: validation
22
+ args: all
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.5767746913580247
27
+ - name: F1
28
+ type: f1
29
+ value: 0.5751836259585372
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # scenario-NON-KD-PR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_
36
+
37
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tweet_sentiment_multilingual dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 4.1676
40
+ - Accuracy: 0.5768
41
+ - F1: 0.5752
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 5e-05
61
+ - train_batch_size: 32
62
+ - eval_batch_size: 32
63
+ - seed: 1123
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 50
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
72
+ | 1.0487 | 1.09 | 500 | 0.9666 | 0.5305 | 0.5194 |
73
+ | 0.9092 | 2.17 | 1000 | 0.9220 | 0.5760 | 0.5733 |
74
+ | 0.76 | 3.26 | 1500 | 1.0464 | 0.5791 | 0.5681 |
75
+ | 0.6233 | 4.35 | 2000 | 1.1732 | 0.5864 | 0.5809 |
76
+ | 0.4852 | 5.43 | 2500 | 1.1695 | 0.5590 | 0.5578 |
77
+ | 0.374 | 6.52 | 3000 | 1.3903 | 0.5691 | 0.5669 |
78
+ | 0.2851 | 7.61 | 3500 | 1.5832 | 0.5760 | 0.5711 |
79
+ | 0.2203 | 8.7 | 4000 | 1.6098 | 0.5737 | 0.5739 |
80
+ | 0.1863 | 9.78 | 4500 | 1.9189 | 0.5656 | 0.5566 |
81
+ | 0.1437 | 10.87 | 5000 | 2.1445 | 0.5826 | 0.5783 |
82
+ | 0.1302 | 11.96 | 5500 | 1.9960 | 0.5791 | 0.5723 |
83
+ | 0.1075 | 13.04 | 6000 | 2.5978 | 0.5710 | 0.5663 |
84
+ | 0.0957 | 14.13 | 6500 | 2.9129 | 0.5675 | 0.5682 |
85
+ | 0.0898 | 15.22 | 7000 | 2.8487 | 0.5799 | 0.5780 |
86
+ | 0.082 | 16.3 | 7500 | 2.8461 | 0.5714 | 0.5621 |
87
+ | 0.0673 | 17.39 | 8000 | 2.8416 | 0.5849 | 0.5767 |
88
+ | 0.0647 | 18.48 | 8500 | 3.1083 | 0.5849 | 0.5810 |
89
+ | 0.0597 | 19.57 | 9000 | 2.9063 | 0.5772 | 0.5700 |
90
+ | 0.0508 | 20.65 | 9500 | 3.1069 | 0.5706 | 0.5663 |
91
+ | 0.0492 | 21.74 | 10000 | 3.1434 | 0.5841 | 0.5853 |
92
+ | 0.0485 | 22.83 | 10500 | 2.9341 | 0.5887 | 0.5816 |
93
+ | 0.0373 | 23.91 | 11000 | 3.2828 | 0.5810 | 0.5807 |
94
+ | 0.0352 | 25.0 | 11500 | 3.1742 | 0.5864 | 0.5802 |
95
+ | 0.0326 | 26.09 | 12000 | 3.2767 | 0.5733 | 0.5734 |
96
+ | 0.0269 | 27.17 | 12500 | 3.5101 | 0.5826 | 0.5797 |
97
+ | 0.0338 | 28.26 | 13000 | 3.2453 | 0.5725 | 0.5693 |
98
+ | 0.0289 | 29.35 | 13500 | 3.3957 | 0.5694 | 0.5703 |
99
+ | 0.0232 | 30.43 | 14000 | 3.4668 | 0.5710 | 0.5714 |
100
+ | 0.0215 | 31.52 | 14500 | 3.5250 | 0.5721 | 0.5660 |
101
+ | 0.0197 | 32.61 | 15000 | 3.5990 | 0.5787 | 0.5755 |
102
+ | 0.0138 | 33.7 | 15500 | 3.7731 | 0.5745 | 0.5682 |
103
+ | 0.0177 | 34.78 | 16000 | 3.6367 | 0.5698 | 0.5671 |
104
+ | 0.0145 | 35.87 | 16500 | 3.8987 | 0.5725 | 0.5705 |
105
+ | 0.013 | 36.96 | 17000 | 3.8459 | 0.5745 | 0.5737 |
106
+ | 0.0133 | 38.04 | 17500 | 3.7106 | 0.5733 | 0.5711 |
107
+ | 0.0095 | 39.13 | 18000 | 3.8834 | 0.5683 | 0.5688 |
108
+ | 0.0091 | 40.22 | 18500 | 3.9118 | 0.5733 | 0.5731 |
109
+ | 0.0107 | 41.3 | 19000 | 3.9038 | 0.5768 | 0.5733 |
110
+ | 0.0089 | 42.39 | 19500 | 3.8957 | 0.5826 | 0.5784 |
111
+ | 0.0042 | 43.48 | 20000 | 4.1050 | 0.5775 | 0.5761 |
112
+ | 0.0067 | 44.57 | 20500 | 4.0982 | 0.5756 | 0.5739 |
113
+ | 0.0042 | 45.65 | 21000 | 4.2051 | 0.5737 | 0.5733 |
114
+ | 0.0057 | 46.74 | 21500 | 4.1266 | 0.5764 | 0.5764 |
115
+ | 0.0056 | 47.83 | 22000 | 4.1318 | 0.5787 | 0.5765 |
116
+ | 0.0034 | 48.91 | 22500 | 4.1443 | 0.5791 | 0.5772 |
117
+ | 0.003 | 50.0 | 23000 | 4.1676 | 0.5768 | 0.5752 |
118
+
119
+
120
+ ### Framework versions
121
+
122
+ - Transformers 4.33.3
123
+ - Pytorch 2.1.1+cu121
124
+ - Datasets 2.14.5
125
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "LABEL_0": 0,
22
+ "LABEL_1": 1,
23
+ "LABEL_2": 2
24
+ },
25
+ "layer_norm_eps": 1e-05,
26
+ "max_position_embeddings": 514,
27
+ "model_type": "xlm-roberta",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 6,
30
+ "output_past": true,
31
+ "pad_token_id": 1,
32
+ "position_embedding_type": "absolute",
33
+ "problem_type": "single_label_classification",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.33.3",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 250002
39
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a7f038cb2a551995f795b6b7ed8e6b68cd4fa9b637cbc16225026f88c2563a
3
+ size 942111086
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45dd9dcb610878e12528726f1a3c008f573a36877908f8f39d4b3a336a3b7705
3
+ size 4664