|
--- |
|
base_model: BAAI/bge-m3 |
|
language: |
|
- ko |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:1K<n<10K |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 하이브리다이저란 무엇인가요? |
|
sentences: |
|
- 하이퍼바이저는 보안에서 어떤 역할을 합니까? |
|
- 지난 몇 년간 CUDA 생태계는 어떻게 발전해 왔나요? |
|
- 로컬 메모리 액세스 성능을 결정하는 요소는 무엇입니까? |
|
- source_sentence: 임시 구독의 용도는 무엇입니까? |
|
sentences: |
|
- 메모리 액세스 최적화에서 프리패치의 역할은 무엇입니까? |
|
- CUDA 인식 MPI는 확장 측면에서 어떻게 작동합니까? |
|
- CUDA 8이 해결하는 계산상의 과제에는 어떤 것이 있습니까? |
|
- source_sentence: '''saxpy''는 무엇을 뜻하나요?' |
|
sentences: |
|
- CUDA C/C++의 맥락에서 SAXPY는 무엇입니까? |
|
- Numba는 다른 GPU 가속 방법과 어떻게 다른가요? |
|
- 장치 LTO는 CUDA 애플리케이션에 어떤 이점을 제공합니까? |
|
- source_sentence: USD/Hydra란 무엇인가요? |
|
sentences: |
|
- 쿠다란 무엇인가요? |
|
- y 미분 계산에 사용되는 접근 방식의 단점은 무엇입니까? |
|
- Pascal 아키텍처는 통합 메모리를 어떻게 개선합니까? |
|
- source_sentence: CUDAcast란 무엇인가요? |
|
sentences: |
|
- CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요? |
|
- 이 게시물에 기여한 것으로 인정받은 사람은 누구입니까? |
|
- WSL 2에서 NVML의 목적은 무엇입니까? |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5443037974683544 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7749648382559775 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8523206751054853 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9409282700421941 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5443037974683544 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2583216127519925 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17046413502109703 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09409282700421939 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5443037974683544 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7749648382559775 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8523206751054853 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9409282700421941 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7411108924386547 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.677065054807671 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6802131506478553 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5386779184247539 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7749648382559775 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8593530239099859 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9451476793248945 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5386779184247539 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2583216127519925 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17187060478199717 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09451476793248943 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5386779184247539 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7749648382559775 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8593530239099859 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9451476793248945 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7413571133247474 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6759917844306029 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.678939165210132 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.540084388185654 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7791842475386779 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8621659634317862 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9423347398030942 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.540084388185654 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.25972808251289264 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1724331926863572 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09423347398030943 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.540084388185654 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7791842475386779 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8621659634317862 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9423347398030942 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7403981257690416 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6756379344986938 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6787046866761269 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.5218002812939522 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7679324894514767 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8635724331926864 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9367088607594937 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.5218002812939522 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2559774964838256 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17271448663853725 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09367088607594935 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.5218002812939522 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7679324894514767 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8635724331926864 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9367088607594937 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7305864977688176 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6641673922264634 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6671648971944116 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.509142053445851 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7426160337552743 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8284106891701828 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9310829817158931 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.509142053445851 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.24753867791842477 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16568213783403654 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09310829817158929 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.509142053445851 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7426160337552743 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8284106891701828 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9310829817158931 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7135661304090457 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6444829549259928 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6474431148702396 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'CUDAcast란 무엇인가요?', |
|
'CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?', |
|
'이 게시물에 기여한 것으로 인정받은 사람은 누구입니까?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5443 | |
|
| cosine_accuracy@3 | 0.775 | |
|
| cosine_accuracy@5 | 0.8523 | |
|
| cosine_accuracy@10 | 0.9409 | |
|
| cosine_precision@1 | 0.5443 | |
|
| cosine_precision@3 | 0.2583 | |
|
| cosine_precision@5 | 0.1705 | |
|
| cosine_precision@10 | 0.0941 | |
|
| cosine_recall@1 | 0.5443 | |
|
| cosine_recall@3 | 0.775 | |
|
| cosine_recall@5 | 0.8523 | |
|
| cosine_recall@10 | 0.9409 | |
|
| cosine_ndcg@10 | 0.7411 | |
|
| cosine_mrr@10 | 0.6771 | |
|
| **cosine_map@100** | **0.6802** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5387 | |
|
| cosine_accuracy@3 | 0.775 | |
|
| cosine_accuracy@5 | 0.8594 | |
|
| cosine_accuracy@10 | 0.9451 | |
|
| cosine_precision@1 | 0.5387 | |
|
| cosine_precision@3 | 0.2583 | |
|
| cosine_precision@5 | 0.1719 | |
|
| cosine_precision@10 | 0.0945 | |
|
| cosine_recall@1 | 0.5387 | |
|
| cosine_recall@3 | 0.775 | |
|
| cosine_recall@5 | 0.8594 | |
|
| cosine_recall@10 | 0.9451 | |
|
| cosine_ndcg@10 | 0.7414 | |
|
| cosine_mrr@10 | 0.676 | |
|
| **cosine_map@100** | **0.6789** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5401 | |
|
| cosine_accuracy@3 | 0.7792 | |
|
| cosine_accuracy@5 | 0.8622 | |
|
| cosine_accuracy@10 | 0.9423 | |
|
| cosine_precision@1 | 0.5401 | |
|
| cosine_precision@3 | 0.2597 | |
|
| cosine_precision@5 | 0.1724 | |
|
| cosine_precision@10 | 0.0942 | |
|
| cosine_recall@1 | 0.5401 | |
|
| cosine_recall@3 | 0.7792 | |
|
| cosine_recall@5 | 0.8622 | |
|
| cosine_recall@10 | 0.9423 | |
|
| cosine_ndcg@10 | 0.7404 | |
|
| cosine_mrr@10 | 0.6756 | |
|
| **cosine_map@100** | **0.6787** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5218 | |
|
| cosine_accuracy@3 | 0.7679 | |
|
| cosine_accuracy@5 | 0.8636 | |
|
| cosine_accuracy@10 | 0.9367 | |
|
| cosine_precision@1 | 0.5218 | |
|
| cosine_precision@3 | 0.256 | |
|
| cosine_precision@5 | 0.1727 | |
|
| cosine_precision@10 | 0.0937 | |
|
| cosine_recall@1 | 0.5218 | |
|
| cosine_recall@3 | 0.7679 | |
|
| cosine_recall@5 | 0.8636 | |
|
| cosine_recall@10 | 0.9367 | |
|
| cosine_ndcg@10 | 0.7306 | |
|
| cosine_mrr@10 | 0.6642 | |
|
| **cosine_map@100** | **0.6672** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.5091 | |
|
| cosine_accuracy@3 | 0.7426 | |
|
| cosine_accuracy@5 | 0.8284 | |
|
| cosine_accuracy@10 | 0.9311 | |
|
| cosine_precision@1 | 0.5091 | |
|
| cosine_precision@3 | 0.2475 | |
|
| cosine_precision@5 | 0.1657 | |
|
| cosine_precision@10 | 0.0931 | |
|
| cosine_recall@1 | 0.5091 | |
|
| cosine_recall@3 | 0.7426 | |
|
| cosine_recall@5 | 0.8284 | |
|
| cosine_recall@10 | 0.9311 | |
|
| cosine_ndcg@10 | 0.7136 | |
|
| cosine_mrr@10 | 0.6445 | |
|
| **cosine_map@100** | **0.6474** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 6,397 training samples |
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | positive | anchor | |
|
|:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 48.46 tokens</li><li>max: 107 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 21.0 tokens</li><li>max: 48 tokens</li></ul> | |
|
* Samples: |
|
| positive | anchor | |
|
|:------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| <code>Warp-stride 및 block-stride 루프는 스레드 동작을 재구성하고 공유 메모리 액세스 패턴을 최적화하는 데 사용되었습니다.</code> | <code>코드에서 공유 메모리 액세스 패턴을 최적화하기 위해 어떤 유형의 루프가 사용되었습니까?</code> | |
|
| <code>Nsight Compute의 규칙은 성능 병목 현상을 식별하기 위한 구조화된 프레임워크를 제공하고 최적화 프로세스를 간소화하기 위한 실행 가능한 통찰력을 제공합니다.</code> | <code>Nsight Compute의 맥락에서 규칙이 중요한 이유는 무엇입니까?</code> | |
|
| <code>NVIDIA Nsight와 같은 도구의 가용성으로 인해 개발자가 단일 GPU에서 디버깅할 수 있게 되어 CUDA 개발 속도가 크게 향상되었습니다. CUDA 메모리 검사기는 메모리 액세스 문제를 식별하여 코드 품질을 향상시키는 데 도움이 됩니다.</code> | <code>디버깅 도구의 가용성이 CUDA 개발에 어떤 영향을 미쳤습니까?</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:--------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.8 | 10 | 1.3103 | - | - | - | - | - | |
|
| 0.96 | 12 | - | 0.6512 | 0.6539 | 0.6688 | 0.6172 | 0.6679 | |
|
| 1.6 | 20 | 0.4148 | - | - | - | - | - | |
|
| 2.0 | 25 | - | 0.6615 | 0.6688 | 0.6783 | 0.6417 | 0.6763 | |
|
| 2.4 | 30 | 0.2683 | - | - | - | - | - | |
|
| **2.88** | **36** | **-** | **0.6672** | **0.6787** | **0.6789** | **0.6474** | **0.6802** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |