File size: 27,193 Bytes
ee1fedc
 
 
c890bd2
ee1fedc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
---
base_model: BAAI/bge-m3
language:
- ko
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 하이브리다이저란 무엇인가요?
  sentences:
  - 하이퍼바이저는 보안에서 어떤 역할을 합니까?
  - 지난  년간 CUDA 생태계는 어떻게 발전해 왔나요?
  - 로컬 메모리 액세스 성능을 결정하는 요소는 무엇입니까?
- source_sentence: 임시 구독의 용도는 무엇입니까?
  sentences:
  - 메모리 액세스 최적화에서 프리패치의 역할은 무엇입니까?
  - CUDA 인식 MPI는 확장 측면에서 어떻게 작동합니까?
  - CUDA 8 해결하는 계산상의 과제에는 어떤 것이 있습니까?
- source_sentence: '''saxpy''는 무엇을 뜻하나요?'
  sentences:
  - CUDA C/C++의 맥락에서 SAXPY는 무엇입니까?
  - Numba는 다른 GPU 가속 방법과 어떻게 다른가요?
  - 장치 LTO는 CUDA 애플리케이션에 어떤 이점을 제공합니까?
- source_sentence: USD/Hydra란 무엇인가요?
  sentences:
  - 쿠다란 무엇인가요?
  - y 미분 계산에 사용되는 접근 방식의 단점은 무엇입니까?
  - Pascal 아키텍처는 통합 메모리를 어떻게 개선합니까?
- source_sentence: CUDAcast란 무엇인가요?
  sentences:
  - CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?
  -  게시물에 기여한 것으로 인정받은 사람은 누구입니까?
  - WSL 2에서 NVML의 목적은 무엇입니까?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.5443037974683544
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7749648382559775
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8523206751054853
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9409282700421941
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5443037974683544
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2583216127519925
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17046413502109703
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09409282700421939
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5443037974683544
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7749648382559775
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8523206751054853
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9409282700421941
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7411108924386547
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.677065054807671
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6802131506478553
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.5386779184247539
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7749648382559775
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8593530239099859
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9451476793248945
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5386779184247539
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2583216127519925
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17187060478199717
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09451476793248943
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5386779184247539
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7749648382559775
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8593530239099859
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9451476793248945
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7413571133247474
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6759917844306029
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.678939165210132
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.540084388185654
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7791842475386779
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8621659634317862
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9423347398030942
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.540084388185654
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25972808251289264
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1724331926863572
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09423347398030943
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.540084388185654
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7791842475386779
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8621659634317862
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9423347398030942
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7403981257690416
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6756379344986938
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6787046866761269
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.5218002812939522
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7679324894514767
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8635724331926864
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9367088607594937
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5218002812939522
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2559774964838256
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17271448663853725
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09367088607594935
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5218002812939522
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7679324894514767
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8635724331926864
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9367088607594937
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7305864977688176
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6641673922264634
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6671648971944116
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.509142053445851
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7426160337552743
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8284106891701828
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9310829817158931
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.509142053445851
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24753867791842477
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16568213783403654
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09310829817158929
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.509142053445851
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7426160337552743
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8284106891701828
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9310829817158931
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7135661304090457
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6444829549259928
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6474431148702396
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'CUDAcast란 무엇인가요?',
    'CUDACast 시리즈에서는 어떤 주제를 다룰 예정인가요?',
    '이 게시물에 기여한 것으로 인정받은 사람은 누구입니까?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5443     |
| cosine_accuracy@3   | 0.775      |
| cosine_accuracy@5   | 0.8523     |
| cosine_accuracy@10  | 0.9409     |
| cosine_precision@1  | 0.5443     |
| cosine_precision@3  | 0.2583     |
| cosine_precision@5  | 0.1705     |
| cosine_precision@10 | 0.0941     |
| cosine_recall@1     | 0.5443     |
| cosine_recall@3     | 0.775      |
| cosine_recall@5     | 0.8523     |
| cosine_recall@10    | 0.9409     |
| cosine_ndcg@10      | 0.7411     |
| cosine_mrr@10       | 0.6771     |
| **cosine_map@100**  | **0.6802** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5387     |
| cosine_accuracy@3   | 0.775      |
| cosine_accuracy@5   | 0.8594     |
| cosine_accuracy@10  | 0.9451     |
| cosine_precision@1  | 0.5387     |
| cosine_precision@3  | 0.2583     |
| cosine_precision@5  | 0.1719     |
| cosine_precision@10 | 0.0945     |
| cosine_recall@1     | 0.5387     |
| cosine_recall@3     | 0.775      |
| cosine_recall@5     | 0.8594     |
| cosine_recall@10    | 0.9451     |
| cosine_ndcg@10      | 0.7414     |
| cosine_mrr@10       | 0.676      |
| **cosine_map@100**  | **0.6789** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5401     |
| cosine_accuracy@3   | 0.7792     |
| cosine_accuracy@5   | 0.8622     |
| cosine_accuracy@10  | 0.9423     |
| cosine_precision@1  | 0.5401     |
| cosine_precision@3  | 0.2597     |
| cosine_precision@5  | 0.1724     |
| cosine_precision@10 | 0.0942     |
| cosine_recall@1     | 0.5401     |
| cosine_recall@3     | 0.7792     |
| cosine_recall@5     | 0.8622     |
| cosine_recall@10    | 0.9423     |
| cosine_ndcg@10      | 0.7404     |
| cosine_mrr@10       | 0.6756     |
| **cosine_map@100**  | **0.6787** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5218     |
| cosine_accuracy@3   | 0.7679     |
| cosine_accuracy@5   | 0.8636     |
| cosine_accuracy@10  | 0.9367     |
| cosine_precision@1  | 0.5218     |
| cosine_precision@3  | 0.256      |
| cosine_precision@5  | 0.1727     |
| cosine_precision@10 | 0.0937     |
| cosine_recall@1     | 0.5218     |
| cosine_recall@3     | 0.7679     |
| cosine_recall@5     | 0.8636     |
| cosine_recall@10    | 0.9367     |
| cosine_ndcg@10      | 0.7306     |
| cosine_mrr@10       | 0.6642     |
| **cosine_map@100**  | **0.6672** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5091     |
| cosine_accuracy@3   | 0.7426     |
| cosine_accuracy@5   | 0.8284     |
| cosine_accuracy@10  | 0.9311     |
| cosine_precision@1  | 0.5091     |
| cosine_precision@3  | 0.2475     |
| cosine_precision@5  | 0.1657     |
| cosine_precision@10 | 0.0931     |
| cosine_recall@1     | 0.5091     |
| cosine_recall@3     | 0.7426     |
| cosine_recall@5     | 0.8284     |
| cosine_recall@10    | 0.9311     |
| cosine_ndcg@10      | 0.7136     |
| cosine_mrr@10       | 0.6445     |
| **cosine_map@100**  | **0.6474** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 6,397 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                           |
  |:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                           |
  | details | <ul><li>min: 11 tokens</li><li>mean: 48.46 tokens</li><li>max: 107 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 21.0 tokens</li><li>max: 48 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                              | anchor                                                        |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | <code>Warp-stride 및 block-stride 루프는 스레드 동작을 재구성하고 공유 메모리 액세스 패턴을 최적화하는 데 사용되었습니다.</code>                                                             | <code>코드에서 공유 메모리 액세스 패턴을 최적화하기 위해 어떤 유형의 루프가 사용되었습니까?</code> |
  | <code>Nsight Compute의 규칙은 성능 병목 현상을 식별하기 위한 구조화된 프레임워크를 제공하고 최적화 프로세스를 간소화하기 위한 실행 가능한 통찰력을 제공합니다.</code>                                             | <code>Nsight Compute의 맥락에서 규칙이 중요한 이유는 무엇입니까?</code>          |
  | <code>NVIDIA Nsight와 같은 도구의 가용성으로 인해 개발자가 단일 GPU에서 디버깅할 수 있게 되어 CUDA 개발 속도가 크게 향상되었습니다. CUDA 메모리 검사기는 메모리 액세스 문제를 식별하여 코드 품질을 향상시키는 데 도움이 됩니다.</code> | <code>디버깅 도구의 가용성이 CUDA 개발에 어떤 영향을 미쳤습니까?</code>              |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch    | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:--------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8      | 10     | 1.3103        | -                      | -                      | -                      | -                     | -                      |
| 0.96     | 12     | -             | 0.6512                 | 0.6539                 | 0.6688                 | 0.6172                | 0.6679                 |
| 1.6      | 20     | 0.4148        | -                      | -                      | -                      | -                     | -                      |
| 2.0      | 25     | -             | 0.6615                 | 0.6688                 | 0.6783                 | 0.6417                | 0.6763                 |
| 2.4      | 30     | 0.2683        | -                      | -                      | -                      | -                     | -                      |
| **2.88** | **36** | **-**         | **0.6672**             | **0.6787**             | **0.6789**             | **0.6474**            | **0.6802**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.18.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->