metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-m3
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
The consolidated financial statements and accompanying notes listed in
Part IV, Item 15(a)(1) of this Annual Report on Form 10-K.
sentences:
- >-
How much total space does an average The Home Depot store encompass
including its garden area?
- >-
What section of the Annual Report on Form 10-K contains the consolidated
financial statements and accompanying notes?
- >-
What types of competitive factors does Garmin believe are important in
its markets?
- source_sentence: >-
Item 3. Legal Proceedings, which covers litigation and regulatory matters,
refers to Note 12 – Commitments and Contingencies for more detailed
information within the Consolidated Financial Statements.
sentences:
- >-
What pages contain the Financial Statements and Supplementary Data in
IBM’s 2023 Annual Report to Stockholders?
- >-
In which note can further details on Legal Proceedings be found within
the Consolidated Financial Statements?
- What is the title of Item 8 in the document?
- source_sentence: Net Revenues for the Entertainment segment were $659.3 million in 2023.
sentences:
- What were the net revenues for the Entertainment segment in 2023?
- How much net cash was provided by operating activities in 2023?
- >-
What was the net income reported for the fiscal year ending in August
2023?
- source_sentence: >-
The capital allocation program focuses on three objectives: (1) grow our
business at an average target ROIC-adjusted rate of 20% or greater; (2)
maintain a strong investment-grade balance sheet, including a target
average automotive cash balance of $18.0 billion; and (3) after the first
two objectives are met, return available cash to shareholders.
sentences:
- >-
Why is ICE Mortgage Technology subject to the examination by the Federal
Financial Institutions Examination Council (FFIEC) and its member
agencies?
- >-
What type of regulations do U.S. automobiles need to comply with under
the National Highway Traffic Safety Administration?
- >-
What are the three objectives of the capital allocation program
referenced?
- source_sentence: >-
As of January 28, 2024 the net carrying value of our inventories was $1.3
billion, which included provisions for obsolete and damaged inventory of
$139.7 million.
sentences:
- >-
What is the status of the company's inventory as of January 28, 2024, in
terms of its valuation and provisions for obsolescence?
- >-
What is the relationship between the ESG goals and the long-term growth
strategy?
- >-
What were the financial impacts of Ford's investments in Rivian and Argo
in the year 2022?
pipeline_tag: sentence-similarity
model-index:
- name: BGE-M3 Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.7171428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8314285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9142857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7171428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09142857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7171428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8314285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9142857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8152097277196483
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7835873015873015
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7867088346410263
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7128571428571429
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8342857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7128571428571429
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2780952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7128571428571429
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8342857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8122143155463835
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7808730158730155
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7843065190190194
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7114285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8357142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7114285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2785714285714286
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7114285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8357142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8109635546819154
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7792959183673466
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.782703758965192
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.7142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8628571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17257142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8628571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8125530857386527
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7806292517006799
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7837508100457361
name: Cosine Map@100
BGE-M3 Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("haophancs/bge-m3-financial-matryoshka")
sentences = [
'As of January 28, 2024 the net carrying value of our inventories was $1.3 billion, which included provisions for obsolete and damaged inventory of $139.7 million.',
"What is the status of the company's inventory as of January 28, 2024, in terms of its valuation and provisions for obsolescence?",
'What is the relationship between the ESG goals and the long-term growth strategy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7171 |
cosine_accuracy@3 |
0.8314 |
cosine_accuracy@5 |
0.87 |
cosine_accuracy@10 |
0.9143 |
cosine_precision@1 |
0.7171 |
cosine_precision@3 |
0.2771 |
cosine_precision@5 |
0.174 |
cosine_precision@10 |
0.0914 |
cosine_recall@1 |
0.7171 |
cosine_recall@3 |
0.8314 |
cosine_recall@5 |
0.87 |
cosine_recall@10 |
0.9143 |
cosine_ndcg@10 |
0.8152 |
cosine_mrr@10 |
0.7836 |
cosine_map@100 |
0.7867 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7129 |
cosine_accuracy@3 |
0.8343 |
cosine_accuracy@5 |
0.8657 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.7129 |
cosine_precision@3 |
0.2781 |
cosine_precision@5 |
0.1731 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.7129 |
cosine_recall@3 |
0.8343 |
cosine_recall@5 |
0.8657 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.8122 |
cosine_mrr@10 |
0.7809 |
cosine_map@100 |
0.7843 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7114 |
cosine_accuracy@3 |
0.8357 |
cosine_accuracy@5 |
0.8643 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.7114 |
cosine_precision@3 |
0.2786 |
cosine_precision@5 |
0.1729 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.7114 |
cosine_recall@3 |
0.8357 |
cosine_recall@5 |
0.8643 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.811 |
cosine_mrr@10 |
0.7793 |
cosine_map@100 |
0.7827 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7143 |
cosine_accuracy@3 |
0.8329 |
cosine_accuracy@5 |
0.8629 |
cosine_accuracy@10 |
0.9129 |
cosine_precision@1 |
0.7143 |
cosine_precision@3 |
0.2776 |
cosine_precision@5 |
0.1726 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.7143 |
cosine_recall@3 |
0.8329 |
cosine_recall@5 |
0.8629 |
cosine_recall@10 |
0.9129 |
cosine_ndcg@10 |
0.8126 |
cosine_mrr@10 |
0.7806 |
cosine_map@100 |
0.7838 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 11 tokens
- mean: 51.97 tokens
- max: 1146 tokens
|
- min: 7 tokens
- mean: 21.63 tokens
- max: 47 tokens
|
- Samples:
positive |
anchor |
From fiscal year 2022 to 2023, the cost of revenue as a percentage of total net revenue decreased by 3 percent. |
What was the percentage change in cost of revenue as a percentage of total net revenue from fiscal year 2022 to 2023? |
•Operating income increased $321 million, or 2%, to $18.1 billion versus year ago due to the increase in net sales, partially offset by a modest decrease in operating margin. |
What factors contributed to the increase in operating income for Procter & Gamble in 2023? |
market specific brands including 'Aurrera,' 'Lider,' and 'PhonePe.' |
What specific brands does Walmart International market? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
384
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 4
per_device_eval_batch_size
: 2
gradient_accumulation_steps
: 2
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 4
per_device_eval_batch_size
: 2
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 2
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
dim_1024_cosine_map@100 |
dim_384_cosine_map@100 |
dim_512_cosine_map@100 |
dim_768_cosine_map@100 |
0.0127 |
10 |
0.2059 |
- |
- |
- |
- |
0.0254 |
20 |
0.2612 |
- |
- |
- |
- |
0.0381 |
30 |
0.0873 |
- |
- |
- |
- |
0.0508 |
40 |
0.1352 |
- |
- |
- |
- |
0.0635 |
50 |
0.156 |
- |
- |
- |
- |
0.0762 |
60 |
0.0407 |
- |
- |
- |
- |
0.0889 |
70 |
0.09 |
- |
- |
- |
- |
0.1016 |
80 |
0.027 |
- |
- |
- |
- |
0.1143 |
90 |
0.0978 |
- |
- |
- |
- |
0.1270 |
100 |
0.0105 |
- |
- |
- |
- |
0.1397 |
110 |
0.0402 |
- |
- |
- |
- |
0.1524 |
120 |
0.0745 |
- |
- |
- |
- |
0.1651 |
130 |
0.0655 |
- |
- |
- |
- |
0.1778 |
140 |
0.0075 |
- |
- |
- |
- |
0.1905 |
150 |
0.0141 |
- |
- |
- |
- |
0.2032 |
160 |
0.0615 |
- |
- |
- |
- |
0.2159 |
170 |
0.0029 |
- |
- |
- |
- |
0.2286 |
180 |
0.0269 |
- |
- |
- |
- |
0.2413 |
190 |
0.0724 |
- |
- |
- |
- |
0.2540 |
200 |
0.0218 |
- |
- |
- |
- |
0.2667 |
210 |
0.0027 |
- |
- |
- |
- |
0.2794 |
220 |
0.007 |
- |
- |
- |
- |
0.2921 |
230 |
0.0814 |
- |
- |
- |
- |
0.3048 |
240 |
0.0326 |
- |
- |
- |
- |
0.3175 |
250 |
0.0061 |
- |
- |
- |
- |
0.3302 |
260 |
0.0471 |
- |
- |
- |
- |
0.3429 |
270 |
0.0115 |
- |
- |
- |
- |
0.3556 |
280 |
0.0021 |
- |
- |
- |
- |
0.3683 |
290 |
0.0975 |
- |
- |
- |
- |
0.3810 |
300 |
0.0572 |
- |
- |
- |
- |
0.3937 |
310 |
0.0125 |
- |
- |
- |
- |
0.4063 |
320 |
0.04 |
- |
- |
- |
- |
0.4190 |
330 |
0.0023 |
- |
- |
- |
- |
0.4317 |
340 |
0.0121 |
- |
- |
- |
- |
0.4444 |
350 |
0.0116 |
- |
- |
- |
- |
0.4571 |
360 |
0.0059 |
- |
- |
- |
- |
0.4698 |
370 |
0.0217 |
- |
- |
- |
- |
0.4825 |
380 |
0.0294 |
- |
- |
- |
- |
0.4952 |
390 |
0.1102 |
- |
- |
- |
- |
0.5079 |
400 |
0.0103 |
- |
- |
- |
- |
0.5206 |
410 |
0.0023 |
- |
- |
- |
- |
0.5333 |
420 |
0.0157 |
- |
- |
- |
- |
0.5460 |
430 |
0.0805 |
- |
- |
- |
- |
0.5587 |
440 |
0.0168 |
- |
- |
- |
- |
0.5714 |
450 |
0.1279 |
- |
- |
- |
- |
0.5841 |
460 |
0.2012 |
- |
- |
- |
- |
0.5968 |
470 |
0.0436 |
- |
- |
- |
- |
0.6095 |
480 |
0.0204 |
- |
- |
- |
- |
0.6222 |
490 |
0.0097 |
- |
- |
- |
- |
0.6349 |
500 |
0.0013 |
- |
- |
- |
- |
0.6476 |
510 |
0.0042 |
- |
- |
- |
- |
0.6603 |
520 |
0.0034 |
- |
- |
- |
- |
0.6730 |
530 |
0.0226 |
- |
- |
- |
- |
0.6857 |
540 |
0.0267 |
- |
- |
- |
- |
0.6984 |
550 |
0.0007 |
- |
- |
- |
- |
0.7111 |
560 |
0.0766 |
- |
- |
- |
- |
0.7238 |
570 |
0.2174 |
- |
- |
- |
- |
0.7365 |
580 |
0.0089 |
- |
- |
- |
- |
0.7492 |
590 |
0.0794 |
- |
- |
- |
- |
0.7619 |
600 |
0.0031 |
- |
- |
- |
- |
0.7746 |
610 |
0.0499 |
- |
- |
- |
- |
0.7873 |
620 |
0.0105 |
- |
- |
- |
- |
0.8 |
630 |
0.0097 |
- |
- |
- |
- |
0.8127 |
640 |
0.0028 |
- |
- |
- |
- |
0.8254 |
650 |
0.0029 |
- |
- |
- |
- |
0.8381 |
660 |
0.1811 |
- |
- |
- |
- |
0.8508 |
670 |
0.064 |
- |
- |
- |
- |
0.8635 |
680 |
0.0139 |
- |
- |
- |
- |
0.8762 |
690 |
0.055 |
- |
- |
- |
- |
0.8889 |
700 |
0.0013 |
- |
- |
- |
- |
0.9016 |
710 |
0.0402 |
- |
- |
- |
- |
0.9143 |
720 |
0.0824 |
- |
- |
- |
- |
0.9270 |
730 |
0.03 |
- |
- |
- |
- |
0.9397 |
740 |
0.0337 |
- |
- |
- |
- |
0.9524 |
750 |
0.1192 |
- |
- |
- |
- |
0.9651 |
760 |
0.0039 |
- |
- |
- |
- |
0.9778 |
770 |
0.004 |
- |
- |
- |
- |
0.9905 |
780 |
0.1413 |
- |
- |
- |
- |
0.9994 |
787 |
- |
0.7851 |
0.7794 |
0.7822 |
0.7863 |
1.0032 |
790 |
0.019 |
- |
- |
- |
- |
1.0159 |
800 |
0.0587 |
- |
- |
- |
- |
1.0286 |
810 |
0.0186 |
- |
- |
- |
- |
1.0413 |
820 |
0.0018 |
- |
- |
- |
- |
1.0540 |
830 |
0.0631 |
- |
- |
- |
- |
1.0667 |
840 |
0.0127 |
- |
- |
- |
- |
1.0794 |
850 |
0.0037 |
- |
- |
- |
- |
1.0921 |
860 |
0.0029 |
- |
- |
- |
- |
1.1048 |
870 |
0.1437 |
- |
- |
- |
- |
1.1175 |
880 |
0.0015 |
- |
- |
- |
- |
1.1302 |
890 |
0.0024 |
- |
- |
- |
- |
1.1429 |
900 |
0.0133 |
- |
- |
- |
- |
1.1556 |
910 |
0.0245 |
- |
- |
- |
- |
1.1683 |
920 |
0.0017 |
- |
- |
- |
- |
1.1810 |
930 |
0.0007 |
- |
- |
- |
- |
1.1937 |
940 |
0.002 |
- |
- |
- |
- |
1.2063 |
950 |
0.0044 |
- |
- |
- |
- |
1.2190 |
960 |
0.0009 |
- |
- |
- |
- |
1.2317 |
970 |
0.01 |
- |
- |
- |
- |
1.2444 |
980 |
0.0026 |
- |
- |
- |
- |
1.2571 |
990 |
0.0017 |
- |
- |
- |
- |
1.2698 |
1000 |
0.0014 |
- |
- |
- |
- |
1.2825 |
1010 |
0.0009 |
- |
- |
- |
- |
1.2952 |
1020 |
0.0829 |
- |
- |
- |
- |
1.3079 |
1030 |
0.0011 |
- |
- |
- |
- |
1.3206 |
1040 |
0.012 |
- |
- |
- |
- |
1.3333 |
1050 |
0.0019 |
- |
- |
- |
- |
1.3460 |
1060 |
0.0007 |
- |
- |
- |
- |
1.3587 |
1070 |
0.0141 |
- |
- |
- |
- |
1.3714 |
1080 |
0.0003 |
- |
- |
- |
- |
1.3841 |
1090 |
0.001 |
- |
- |
- |
- |
1.3968 |
1100 |
0.0005 |
- |
- |
- |
- |
1.4095 |
1110 |
0.0031 |
- |
- |
- |
- |
1.4222 |
1120 |
0.0004 |
- |
- |
- |
- |
1.4349 |
1130 |
0.0054 |
- |
- |
- |
- |
1.4476 |
1140 |
0.0003 |
- |
- |
- |
- |
1.4603 |
1150 |
0.0007 |
- |
- |
- |
- |
1.4730 |
1160 |
0.0009 |
- |
- |
- |
- |
1.4857 |
1170 |
0.001 |
- |
- |
- |
- |
1.4984 |
1180 |
0.0006 |
- |
- |
- |
- |
1.5111 |
1190 |
0.0046 |
- |
- |
- |
- |
1.5238 |
1200 |
0.0003 |
- |
- |
- |
- |
1.5365 |
1210 |
0.0002 |
- |
- |
- |
- |
1.5492 |
1220 |
0.004 |
- |
- |
- |
- |
1.5619 |
1230 |
0.0017 |
- |
- |
- |
- |
1.5746 |
1240 |
0.0003 |
- |
- |
- |
- |
1.5873 |
1250 |
0.0027 |
- |
- |
- |
- |
1.6 |
1260 |
0.1134 |
- |
- |
- |
- |
1.6127 |
1270 |
0.0007 |
- |
- |
- |
- |
1.6254 |
1280 |
0.0005 |
- |
- |
- |
- |
1.6381 |
1290 |
0.0008 |
- |
- |
- |
- |
1.6508 |
1300 |
0.0001 |
- |
- |
- |
- |
1.6635 |
1310 |
0.0023 |
- |
- |
- |
- |
1.6762 |
1320 |
0.0005 |
- |
- |
- |
- |
1.6889 |
1330 |
0.0004 |
- |
- |
- |
- |
1.7016 |
1340 |
0.0003 |
- |
- |
- |
- |
1.7143 |
1350 |
0.0347 |
- |
- |
- |
- |
1.7270 |
1360 |
0.0339 |
- |
- |
- |
- |
1.7397 |
1370 |
0.0003 |
- |
- |
- |
- |
1.7524 |
1380 |
0.0005 |
- |
- |
- |
- |
1.7651 |
1390 |
0.0002 |
- |
- |
- |
- |
1.7778 |
1400 |
0.0031 |
- |
- |
- |
- |
1.7905 |
1410 |
0.0002 |
- |
- |
- |
- |
1.8032 |
1420 |
0.0012 |
- |
- |
- |
- |
1.8159 |
1430 |
0.0002 |
- |
- |
- |
- |
1.8286 |
1440 |
0.0002 |
- |
- |
- |
- |
1.8413 |
1450 |
0.0004 |
- |
- |
- |
- |
1.8540 |
1460 |
0.011 |
- |
- |
- |
- |
1.8667 |
1470 |
0.0824 |
- |
- |
- |
- |
1.8794 |
1480 |
0.0003 |
- |
- |
- |
- |
1.8921 |
1490 |
0.0004 |
- |
- |
- |
- |
1.9048 |
1500 |
0.0006 |
- |
- |
- |
- |
1.9175 |
1510 |
0.015 |
- |
- |
- |
- |
1.9302 |
1520 |
0.0004 |
- |
- |
- |
- |
1.9429 |
1530 |
0.0004 |
- |
- |
- |
- |
1.9556 |
1540 |
0.0011 |
- |
- |
- |
- |
1.9683 |
1550 |
0.0003 |
- |
- |
- |
- |
1.9810 |
1560 |
0.0006 |
- |
- |
- |
- |
1.9937 |
1570 |
0.0042 |
- |
- |
- |
- |
2.0 |
1575 |
- |
0.7862 |
0.7855 |
0.7852 |
0.7878 |
2.0063 |
1580 |
0.0005 |
- |
- |
- |
- |
2.0190 |
1590 |
0.002 |
- |
- |
- |
- |
2.0317 |
1600 |
0.0013 |
- |
- |
- |
- |
2.0444 |
1610 |
0.0002 |
- |
- |
- |
- |
2.0571 |
1620 |
0.0035 |
- |
- |
- |
- |
2.0698 |
1630 |
0.0004 |
- |
- |
- |
- |
2.0825 |
1640 |
0.0002 |
- |
- |
- |
- |
2.0952 |
1650 |
0.0032 |
- |
- |
- |
- |
2.1079 |
1660 |
0.0916 |
- |
- |
- |
- |
2.1206 |
1670 |
0.0002 |
- |
- |
- |
- |
2.1333 |
1680 |
0.0006 |
- |
- |
- |
- |
2.1460 |
1690 |
0.0002 |
- |
- |
- |
- |
2.1587 |
1700 |
0.0003 |
- |
- |
- |
- |
2.1714 |
1710 |
0.0001 |
- |
- |
- |
- |
2.1841 |
1720 |
0.0001 |
- |
- |
- |
- |
2.1968 |
1730 |
0.0004 |
- |
- |
- |
- |
2.2095 |
1740 |
0.0004 |
- |
- |
- |
- |
2.2222 |
1750 |
0.0001 |
- |
- |
- |
- |
2.2349 |
1760 |
0.0002 |
- |
- |
- |
- |
2.2476 |
1770 |
0.0007 |
- |
- |
- |
- |
2.2603 |
1780 |
0.0001 |
- |
- |
- |
- |
2.2730 |
1790 |
0.0002 |
- |
- |
- |
- |
2.2857 |
1800 |
0.0004 |
- |
- |
- |
- |
2.2984 |
1810 |
0.0711 |
- |
- |
- |
- |
2.3111 |
1820 |
0.0001 |
- |
- |
- |
- |
2.3238 |
1830 |
0.0005 |
- |
- |
- |
- |
2.3365 |
1840 |
0.0004 |
- |
- |
- |
- |
2.3492 |
1850 |
0.0001 |
- |
- |
- |
- |
2.3619 |
1860 |
0.0005 |
- |
- |
- |
- |
2.3746 |
1870 |
0.0003 |
- |
- |
- |
- |
2.3873 |
1880 |
0.0001 |
- |
- |
- |
- |
2.4 |
1890 |
0.0002 |
- |
- |
- |
- |
2.4127 |
1900 |
0.0001 |
- |
- |
- |
- |
2.4254 |
1910 |
0.0002 |
- |
- |
- |
- |
2.4381 |
1920 |
0.0002 |
- |
- |
- |
- |
2.4508 |
1930 |
0.0002 |
- |
- |
- |
- |
2.4635 |
1940 |
0.0004 |
- |
- |
- |
- |
2.4762 |
1950 |
0.0001 |
- |
- |
- |
- |
2.4889 |
1960 |
0.0002 |
- |
- |
- |
- |
2.5016 |
1970 |
0.0002 |
- |
- |
- |
- |
2.5143 |
1980 |
0.0001 |
- |
- |
- |
- |
2.5270 |
1990 |
0.0001 |
- |
- |
- |
- |
2.5397 |
2000 |
0.0002 |
- |
- |
- |
- |
2.5524 |
2010 |
0.0023 |
- |
- |
- |
- |
2.5651 |
2020 |
0.0002 |
- |
- |
- |
- |
2.5778 |
2030 |
0.0001 |
- |
- |
- |
- |
2.5905 |
2040 |
0.0003 |
- |
- |
- |
- |
2.6032 |
2050 |
0.0003 |
- |
- |
- |
- |
2.6159 |
2060 |
0.0002 |
- |
- |
- |
- |
2.6286 |
2070 |
0.0001 |
- |
- |
- |
- |
2.6413 |
2080 |
0.0 |
- |
- |
- |
- |
2.6540 |
2090 |
0.0001 |
- |
- |
- |
- |
2.6667 |
2100 |
0.0001 |
- |
- |
- |
- |
2.6794 |
2110 |
0.0001 |
- |
- |
- |
- |
2.6921 |
2120 |
0.0001 |
- |
- |
- |
- |
2.7048 |
2130 |
0.0001 |
- |
- |
- |
- |
2.7175 |
2140 |
0.0048 |
- |
- |
- |
- |
2.7302 |
2150 |
0.0005 |
- |
- |
- |
- |
2.7429 |
2160 |
0.0001 |
- |
- |
- |
- |
2.7556 |
2170 |
0.0001 |
- |
- |
- |
- |
2.7683 |
2180 |
0.0001 |
- |
- |
- |
- |
2.7810 |
2190 |
0.0001 |
- |
- |
- |
- |
2.7937 |
2200 |
0.0001 |
- |
- |
- |
- |
2.8063 |
2210 |
0.0001 |
- |
- |
- |
- |
2.8190 |
2220 |
0.0001 |
- |
- |
- |
- |
2.8317 |
2230 |
0.0002 |
- |
- |
- |
- |
2.8444 |
2240 |
0.0036 |
- |
- |
- |
- |
2.8571 |
2250 |
0.0001 |
- |
- |
- |
- |
2.8698 |
2260 |
0.0368 |
- |
- |
- |
- |
2.8825 |
2270 |
0.0003 |
- |
- |
- |
- |
2.8952 |
2280 |
0.0002 |
- |
- |
- |
- |
2.9079 |
2290 |
0.0001 |
- |
- |
- |
- |
2.9206 |
2300 |
0.0005 |
- |
- |
- |
- |
2.9333 |
2310 |
0.0001 |
- |
- |
- |
- |
2.9460 |
2320 |
0.0001 |
- |
- |
- |
- |
2.9587 |
2330 |
0.0003 |
- |
- |
- |
- |
2.9714 |
2340 |
0.0001 |
- |
- |
- |
- |
2.9841 |
2350 |
0.0001 |
- |
- |
- |
- |
2.9968 |
2360 |
0.0002 |
- |
- |
- |
- |
2.9994 |
2362 |
- |
0.7864 |
0.7805 |
0.7838 |
0.7852 |
3.0095 |
2370 |
0.0025 |
- |
- |
- |
- |
3.0222 |
2380 |
0.0002 |
- |
- |
- |
- |
3.0349 |
2390 |
0.0001 |
- |
- |
- |
- |
3.0476 |
2400 |
0.0001 |
- |
- |
- |
- |
3.0603 |
2410 |
0.0001 |
- |
- |
- |
- |
3.0730 |
2420 |
0.0001 |
- |
- |
- |
- |
3.0857 |
2430 |
0.0001 |
- |
- |
- |
- |
3.0984 |
2440 |
0.0002 |
- |
- |
- |
- |
3.1111 |
2450 |
0.0116 |
- |
- |
- |
- |
3.1238 |
2460 |
0.0002 |
- |
- |
- |
- |
3.1365 |
2470 |
0.0001 |
- |
- |
- |
- |
3.1492 |
2480 |
0.0001 |
- |
- |
- |
- |
3.1619 |
2490 |
0.0001 |
- |
- |
- |
- |
3.1746 |
2500 |
0.0001 |
- |
- |
- |
- |
3.1873 |
2510 |
0.0001 |
- |
- |
- |
- |
3.2 |
2520 |
0.0001 |
- |
- |
- |
- |
3.2127 |
2530 |
0.0001 |
- |
- |
- |
- |
3.2254 |
2540 |
0.0001 |
- |
- |
- |
- |
3.2381 |
2550 |
0.0002 |
- |
- |
- |
- |
3.2508 |
2560 |
0.0001 |
- |
- |
- |
- |
3.2635 |
2570 |
0.0001 |
- |
- |
- |
- |
3.2762 |
2580 |
0.0001 |
- |
- |
- |
- |
3.2889 |
2590 |
0.0001 |
- |
- |
- |
- |
3.3016 |
2600 |
0.063 |
- |
- |
- |
- |
3.3143 |
2610 |
0.0001 |
- |
- |
- |
- |
3.3270 |
2620 |
0.0001 |
- |
- |
- |
- |
3.3397 |
2630 |
0.0001 |
- |
- |
- |
- |
3.3524 |
2640 |
0.0001 |
- |
- |
- |
- |
3.3651 |
2650 |
0.0002 |
- |
- |
- |
- |
3.3778 |
2660 |
0.0001 |
- |
- |
- |
- |
3.3905 |
2670 |
0.0001 |
- |
- |
- |
- |
3.4032 |
2680 |
0.0001 |
- |
- |
- |
- |
3.4159 |
2690 |
0.0001 |
- |
- |
- |
- |
3.4286 |
2700 |
0.0001 |
- |
- |
- |
- |
3.4413 |
2710 |
0.0001 |
- |
- |
- |
- |
3.4540 |
2720 |
0.0002 |
- |
- |
- |
- |
3.4667 |
2730 |
0.0001 |
- |
- |
- |
- |
3.4794 |
2740 |
0.0001 |
- |
- |
- |
- |
3.4921 |
2750 |
0.0001 |
- |
- |
- |
- |
3.5048 |
2760 |
0.0001 |
- |
- |
- |
- |
3.5175 |
2770 |
0.0002 |
- |
- |
- |
- |
3.5302 |
2780 |
0.0001 |
- |
- |
- |
- |
3.5429 |
2790 |
0.0001 |
- |
- |
- |
- |
3.5556 |
2800 |
0.0001 |
- |
- |
- |
- |
3.5683 |
2810 |
0.0001 |
- |
- |
- |
- |
3.5810 |
2820 |
0.0001 |
- |
- |
- |
- |
3.5937 |
2830 |
0.0001 |
- |
- |
- |
- |
3.6063 |
2840 |
0.0001 |
- |
- |
- |
- |
3.6190 |
2850 |
0.0 |
- |
- |
- |
- |
3.6317 |
2860 |
0.0001 |
- |
- |
- |
- |
3.6444 |
2870 |
0.0001 |
- |
- |
- |
- |
3.6571 |
2880 |
0.0001 |
- |
- |
- |
- |
3.6698 |
2890 |
0.0001 |
- |
- |
- |
- |
3.6825 |
2900 |
0.0001 |
- |
- |
- |
- |
3.6952 |
2910 |
0.0001 |
- |
- |
- |
- |
3.7079 |
2920 |
0.0001 |
- |
- |
- |
- |
3.7206 |
2930 |
0.0003 |
- |
- |
- |
- |
3.7333 |
2940 |
0.0001 |
- |
- |
- |
- |
3.7460 |
2950 |
0.0001 |
- |
- |
- |
- |
3.7587 |
2960 |
0.0001 |
- |
- |
- |
- |
3.7714 |
2970 |
0.0002 |
- |
- |
- |
- |
3.7841 |
2980 |
0.0001 |
- |
- |
- |
- |
3.7968 |
2990 |
0.0001 |
- |
- |
- |
- |
3.8095 |
3000 |
0.0001 |
- |
- |
- |
- |
3.8222 |
3010 |
0.0001 |
- |
- |
- |
- |
3.8349 |
3020 |
0.0002 |
- |
- |
- |
- |
3.8476 |
3030 |
0.0001 |
- |
- |
- |
- |
3.8603 |
3040 |
0.0001 |
- |
- |
- |
- |
3.8730 |
3050 |
0.0214 |
- |
- |
- |
- |
3.8857 |
3060 |
0.0001 |
- |
- |
- |
- |
3.8984 |
3070 |
0.0001 |
- |
- |
- |
- |
3.9111 |
3080 |
0.0001 |
- |
- |
- |
- |
3.9238 |
3090 |
0.0001 |
- |
- |
- |
- |
3.9365 |
3100 |
0.0001 |
- |
- |
- |
- |
3.9492 |
3110 |
0.0001 |
- |
- |
- |
- |
3.9619 |
3120 |
0.0001 |
- |
- |
- |
- |
3.9746 |
3130 |
0.0001 |
- |
- |
- |
- |
3.9873 |
3140 |
0.0001 |
- |
- |
- |
- |
3.9975 |
3148 |
- |
0.7867 |
0.7838 |
0.7827 |
0.7843 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}