Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1046 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1046 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: sentence-transformers
|
6 |
+
tags:
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- feature-extraction
|
10 |
+
- generated_from_trainer
|
11 |
+
- dataset_size:6300
|
12 |
+
- loss:MatryoshkaLoss
|
13 |
+
- loss:MultipleNegativesRankingLoss
|
14 |
+
base_model: BAAI/bge-m3
|
15 |
+
datasets: []
|
16 |
+
metrics:
|
17 |
+
- cosine_accuracy@1
|
18 |
+
- cosine_accuracy@3
|
19 |
+
- cosine_accuracy@5
|
20 |
+
- cosine_accuracy@10
|
21 |
+
- cosine_precision@1
|
22 |
+
- cosine_precision@3
|
23 |
+
- cosine_precision@5
|
24 |
+
- cosine_precision@10
|
25 |
+
- cosine_recall@1
|
26 |
+
- cosine_recall@3
|
27 |
+
- cosine_recall@5
|
28 |
+
- cosine_recall@10
|
29 |
+
- cosine_ndcg@10
|
30 |
+
- cosine_mrr@10
|
31 |
+
- cosine_map@100
|
32 |
+
widget:
|
33 |
+
- source_sentence: The consolidated financial statements and accompanying notes listed
|
34 |
+
in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K.
|
35 |
+
sentences:
|
36 |
+
- How much total space does an average The Home Depot store encompass including
|
37 |
+
its garden area?
|
38 |
+
- What section of the Annual Report on Form 10-K contains the consolidated financial
|
39 |
+
statements and accompanying notes?
|
40 |
+
- What types of competitive factors does Garmin believe are important in its markets?
|
41 |
+
- source_sentence: Item 3. Legal Proceedings, which covers litigation and regulatory
|
42 |
+
matters, refers to Note 12 – Commitments and Contingencies for more detailed information
|
43 |
+
within the Consolidated Financial Statements.
|
44 |
+
sentences:
|
45 |
+
- What pages contain the Financial Statements and Supplementary Data in IBM’s 2023
|
46 |
+
Annual Report to Stockholders?
|
47 |
+
- In which note can further details on Legal Proceedings be found within the Consolidated
|
48 |
+
Financial Statements?
|
49 |
+
- What is the title of Item 8 in the document?
|
50 |
+
- source_sentence: Net Revenues for the Entertainment segment were $659.3 million
|
51 |
+
in 2023.
|
52 |
+
sentences:
|
53 |
+
- What were the net revenues for the Entertainment segment in 2023?
|
54 |
+
- How much net cash was provided by operating activities in 2023?
|
55 |
+
- What was the net income reported for the fiscal year ending in August 2023?
|
56 |
+
- source_sentence: 'The capital allocation program focuses on three objectives: (1)
|
57 |
+
grow our business at an average target ROIC-adjusted rate of 20% or greater; (2)
|
58 |
+
maintain a strong investment-grade balance sheet, including a target average automotive
|
59 |
+
cash balance of $18.0 billion; and (3) after the first two objectives are met,
|
60 |
+
return available cash to shareholders.'
|
61 |
+
sentences:
|
62 |
+
- Why is ICE Mortgage Technology subject to the examination by the Federal Financial
|
63 |
+
Institutions Examination Council (FFIEC) and its member agencies?
|
64 |
+
- What type of regulations do U.S. automobiles need to comply with under the National
|
65 |
+
Highway Traffic Safety Administration?
|
66 |
+
- What are the three objectives of the capital allocation program referenced?
|
67 |
+
- source_sentence: As of January 28, 2024 the net carrying value of our inventories
|
68 |
+
was $1.3 billion, which included provisions for obsolete and damaged inventory
|
69 |
+
of $139.7 million.
|
70 |
+
sentences:
|
71 |
+
- What is the status of the company's inventory as of January 28, 2024, in terms
|
72 |
+
of its valuation and provisions for obsolescence?
|
73 |
+
- What is the relationship between the ESG goals and the long-term growth strategy?
|
74 |
+
- What were the financial impacts of Ford's investments in Rivian and Argo in the
|
75 |
+
year 2022?
|
76 |
+
pipeline_tag: sentence-similarity
|
77 |
+
model-index:
|
78 |
+
- name: BGE-M3 Financial Matryoshka
|
79 |
+
results:
|
80 |
+
- task:
|
81 |
+
type: information-retrieval
|
82 |
+
name: Information Retrieval
|
83 |
+
dataset:
|
84 |
+
name: dim 1024
|
85 |
+
type: dim_1024
|
86 |
+
metrics:
|
87 |
+
- type: cosine_accuracy@1
|
88 |
+
value: 0.7171428571428572
|
89 |
+
name: Cosine Accuracy@1
|
90 |
+
- type: cosine_accuracy@3
|
91 |
+
value: 0.8314285714285714
|
92 |
+
name: Cosine Accuracy@3
|
93 |
+
- type: cosine_accuracy@5
|
94 |
+
value: 0.87
|
95 |
+
name: Cosine Accuracy@5
|
96 |
+
- type: cosine_accuracy@10
|
97 |
+
value: 0.9142857142857143
|
98 |
+
name: Cosine Accuracy@10
|
99 |
+
- type: cosine_precision@1
|
100 |
+
value: 0.7171428571428572
|
101 |
+
name: Cosine Precision@1
|
102 |
+
- type: cosine_precision@3
|
103 |
+
value: 0.27714285714285714
|
104 |
+
name: Cosine Precision@3
|
105 |
+
- type: cosine_precision@5
|
106 |
+
value: 0.174
|
107 |
+
name: Cosine Precision@5
|
108 |
+
- type: cosine_precision@10
|
109 |
+
value: 0.09142857142857141
|
110 |
+
name: Cosine Precision@10
|
111 |
+
- type: cosine_recall@1
|
112 |
+
value: 0.7171428571428572
|
113 |
+
name: Cosine Recall@1
|
114 |
+
- type: cosine_recall@3
|
115 |
+
value: 0.8314285714285714
|
116 |
+
name: Cosine Recall@3
|
117 |
+
- type: cosine_recall@5
|
118 |
+
value: 0.87
|
119 |
+
name: Cosine Recall@5
|
120 |
+
- type: cosine_recall@10
|
121 |
+
value: 0.9142857142857143
|
122 |
+
name: Cosine Recall@10
|
123 |
+
- type: cosine_ndcg@10
|
124 |
+
value: 0.8152097277196483
|
125 |
+
name: Cosine Ndcg@10
|
126 |
+
- type: cosine_mrr@10
|
127 |
+
value: 0.7835873015873015
|
128 |
+
name: Cosine Mrr@10
|
129 |
+
- type: cosine_map@100
|
130 |
+
value: 0.7867088346410263
|
131 |
+
name: Cosine Map@100
|
132 |
+
- task:
|
133 |
+
type: information-retrieval
|
134 |
+
name: Information Retrieval
|
135 |
+
dataset:
|
136 |
+
name: dim 768
|
137 |
+
type: dim_768
|
138 |
+
metrics:
|
139 |
+
- type: cosine_accuracy@1
|
140 |
+
value: 0.7128571428571429
|
141 |
+
name: Cosine Accuracy@1
|
142 |
+
- type: cosine_accuracy@3
|
143 |
+
value: 0.8342857142857143
|
144 |
+
name: Cosine Accuracy@3
|
145 |
+
- type: cosine_accuracy@5
|
146 |
+
value: 0.8657142857142858
|
147 |
+
name: Cosine Accuracy@5
|
148 |
+
- type: cosine_accuracy@10
|
149 |
+
value: 0.91
|
150 |
+
name: Cosine Accuracy@10
|
151 |
+
- type: cosine_precision@1
|
152 |
+
value: 0.7128571428571429
|
153 |
+
name: Cosine Precision@1
|
154 |
+
- type: cosine_precision@3
|
155 |
+
value: 0.2780952380952381
|
156 |
+
name: Cosine Precision@3
|
157 |
+
- type: cosine_precision@5
|
158 |
+
value: 0.17314285714285713
|
159 |
+
name: Cosine Precision@5
|
160 |
+
- type: cosine_precision@10
|
161 |
+
value: 0.09099999999999998
|
162 |
+
name: Cosine Precision@10
|
163 |
+
- type: cosine_recall@1
|
164 |
+
value: 0.7128571428571429
|
165 |
+
name: Cosine Recall@1
|
166 |
+
- type: cosine_recall@3
|
167 |
+
value: 0.8342857142857143
|
168 |
+
name: Cosine Recall@3
|
169 |
+
- type: cosine_recall@5
|
170 |
+
value: 0.8657142857142858
|
171 |
+
name: Cosine Recall@5
|
172 |
+
- type: cosine_recall@10
|
173 |
+
value: 0.91
|
174 |
+
name: Cosine Recall@10
|
175 |
+
- type: cosine_ndcg@10
|
176 |
+
value: 0.8122143155463835
|
177 |
+
name: Cosine Ndcg@10
|
178 |
+
- type: cosine_mrr@10
|
179 |
+
value: 0.7808730158730155
|
180 |
+
name: Cosine Mrr@10
|
181 |
+
- type: cosine_map@100
|
182 |
+
value: 0.7843065190190194
|
183 |
+
name: Cosine Map@100
|
184 |
+
- task:
|
185 |
+
type: information-retrieval
|
186 |
+
name: Information Retrieval
|
187 |
+
dataset:
|
188 |
+
name: dim 512
|
189 |
+
type: dim_512
|
190 |
+
metrics:
|
191 |
+
- type: cosine_accuracy@1
|
192 |
+
value: 0.7114285714285714
|
193 |
+
name: Cosine Accuracy@1
|
194 |
+
- type: cosine_accuracy@3
|
195 |
+
value: 0.8357142857142857
|
196 |
+
name: Cosine Accuracy@3
|
197 |
+
- type: cosine_accuracy@5
|
198 |
+
value: 0.8642857142857143
|
199 |
+
name: Cosine Accuracy@5
|
200 |
+
- type: cosine_accuracy@10
|
201 |
+
value: 0.91
|
202 |
+
name: Cosine Accuracy@10
|
203 |
+
- type: cosine_precision@1
|
204 |
+
value: 0.7114285714285714
|
205 |
+
name: Cosine Precision@1
|
206 |
+
- type: cosine_precision@3
|
207 |
+
value: 0.2785714285714286
|
208 |
+
name: Cosine Precision@3
|
209 |
+
- type: cosine_precision@5
|
210 |
+
value: 0.17285714285714285
|
211 |
+
name: Cosine Precision@5
|
212 |
+
- type: cosine_precision@10
|
213 |
+
value: 0.09099999999999998
|
214 |
+
name: Cosine Precision@10
|
215 |
+
- type: cosine_recall@1
|
216 |
+
value: 0.7114285714285714
|
217 |
+
name: Cosine Recall@1
|
218 |
+
- type: cosine_recall@3
|
219 |
+
value: 0.8357142857142857
|
220 |
+
name: Cosine Recall@3
|
221 |
+
- type: cosine_recall@5
|
222 |
+
value: 0.8642857142857143
|
223 |
+
name: Cosine Recall@5
|
224 |
+
- type: cosine_recall@10
|
225 |
+
value: 0.91
|
226 |
+
name: Cosine Recall@10
|
227 |
+
- type: cosine_ndcg@10
|
228 |
+
value: 0.8109635546819154
|
229 |
+
name: Cosine Ndcg@10
|
230 |
+
- type: cosine_mrr@10
|
231 |
+
value: 0.7792959183673466
|
232 |
+
name: Cosine Mrr@10
|
233 |
+
- type: cosine_map@100
|
234 |
+
value: 0.782703758965192
|
235 |
+
name: Cosine Map@100
|
236 |
+
- task:
|
237 |
+
type: information-retrieval
|
238 |
+
name: Information Retrieval
|
239 |
+
dataset:
|
240 |
+
name: dim 384
|
241 |
+
type: dim_384
|
242 |
+
metrics:
|
243 |
+
- type: cosine_accuracy@1
|
244 |
+
value: 0.7142857142857143
|
245 |
+
name: Cosine Accuracy@1
|
246 |
+
- type: cosine_accuracy@3
|
247 |
+
value: 0.8328571428571429
|
248 |
+
name: Cosine Accuracy@3
|
249 |
+
- type: cosine_accuracy@5
|
250 |
+
value: 0.8628571428571429
|
251 |
+
name: Cosine Accuracy@5
|
252 |
+
- type: cosine_accuracy@10
|
253 |
+
value: 0.9128571428571428
|
254 |
+
name: Cosine Accuracy@10
|
255 |
+
- type: cosine_precision@1
|
256 |
+
value: 0.7142857142857143
|
257 |
+
name: Cosine Precision@1
|
258 |
+
- type: cosine_precision@3
|
259 |
+
value: 0.2776190476190476
|
260 |
+
name: Cosine Precision@3
|
261 |
+
- type: cosine_precision@5
|
262 |
+
value: 0.17257142857142854
|
263 |
+
name: Cosine Precision@5
|
264 |
+
- type: cosine_precision@10
|
265 |
+
value: 0.09128571428571428
|
266 |
+
name: Cosine Precision@10
|
267 |
+
- type: cosine_recall@1
|
268 |
+
value: 0.7142857142857143
|
269 |
+
name: Cosine Recall@1
|
270 |
+
- type: cosine_recall@3
|
271 |
+
value: 0.8328571428571429
|
272 |
+
name: Cosine Recall@3
|
273 |
+
- type: cosine_recall@5
|
274 |
+
value: 0.8628571428571429
|
275 |
+
name: Cosine Recall@5
|
276 |
+
- type: cosine_recall@10
|
277 |
+
value: 0.9128571428571428
|
278 |
+
name: Cosine Recall@10
|
279 |
+
- type: cosine_ndcg@10
|
280 |
+
value: 0.8125530857386527
|
281 |
+
name: Cosine Ndcg@10
|
282 |
+
- type: cosine_mrr@10
|
283 |
+
value: 0.7806292517006799
|
284 |
+
name: Cosine Mrr@10
|
285 |
+
- type: cosine_map@100
|
286 |
+
value: 0.7837508100457361
|
287 |
+
name: Cosine Map@100
|
288 |
+
---
|
289 |
+
|
290 |
+
# BGE-M3 Financial Matryoshka
|
291 |
+
|
292 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
293 |
+
|
294 |
+
## Model Details
|
295 |
+
|
296 |
+
### Model Description
|
297 |
+
- **Model Type:** Sentence Transformer
|
298 |
+
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision babcf60cae0a1f438d7ade582983d4ba462303c2 -->
|
299 |
+
- **Maximum Sequence Length:** 8192 tokens
|
300 |
+
- **Output Dimensionality:** 1024 tokens
|
301 |
+
- **Similarity Function:** Cosine Similarity
|
302 |
+
<!-- - **Training Dataset:** Unknown -->
|
303 |
+
- **Language:** en
|
304 |
+
- **License:** apache-2.0
|
305 |
+
|
306 |
+
### Model Sources
|
307 |
+
|
308 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
309 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
310 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
311 |
+
|
312 |
+
### Full Model Architecture
|
313 |
+
|
314 |
+
```
|
315 |
+
SentenceTransformer(
|
316 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
317 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
318 |
+
(2): Normalize()
|
319 |
+
)
|
320 |
+
```
|
321 |
+
|
322 |
+
## Usage
|
323 |
+
|
324 |
+
### Direct Usage (Sentence Transformers)
|
325 |
+
|
326 |
+
First install the Sentence Transformers library:
|
327 |
+
|
328 |
+
```bash
|
329 |
+
pip install -U sentence-transformers
|
330 |
+
```
|
331 |
+
|
332 |
+
Then you can load this model and run inference.
|
333 |
+
```python
|
334 |
+
from sentence_transformers import SentenceTransformer
|
335 |
+
|
336 |
+
# Download from the 🤗 Hub
|
337 |
+
model = SentenceTransformer("haophancs/bge-m3-financial-matryoshka")
|
338 |
+
# Run inference
|
339 |
+
sentences = [
|
340 |
+
'As of January 28, 2024 the net carrying value of our inventories was $1.3 billion, which included provisions for obsolete and damaged inventory of $139.7 million.',
|
341 |
+
"What is the status of the company's inventory as of January 28, 2024, in terms of its valuation and provisions for obsolescence?",
|
342 |
+
'What is the relationship between the ESG goals and the long-term growth strategy?',
|
343 |
+
]
|
344 |
+
embeddings = model.encode(sentences)
|
345 |
+
print(embeddings.shape)
|
346 |
+
# [3, 1024]
|
347 |
+
|
348 |
+
# Get the similarity scores for the embeddings
|
349 |
+
similarities = model.similarity(embeddings, embeddings)
|
350 |
+
print(similarities.shape)
|
351 |
+
# [3, 3]
|
352 |
+
```
|
353 |
+
|
354 |
+
<!--
|
355 |
+
### Direct Usage (Transformers)
|
356 |
+
|
357 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
358 |
+
|
359 |
+
</details>
|
360 |
+
-->
|
361 |
+
|
362 |
+
<!--
|
363 |
+
### Downstream Usage (Sentence Transformers)
|
364 |
+
|
365 |
+
You can finetune this model on your own dataset.
|
366 |
+
|
367 |
+
<details><summary>Click to expand</summary>
|
368 |
+
|
369 |
+
</details>
|
370 |
+
-->
|
371 |
+
|
372 |
+
<!--
|
373 |
+
### Out-of-Scope Use
|
374 |
+
|
375 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
376 |
+
-->
|
377 |
+
|
378 |
+
## Evaluation
|
379 |
+
|
380 |
+
### Metrics
|
381 |
+
|
382 |
+
#### Information Retrieval
|
383 |
+
* Dataset: `dim_1024`
|
384 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
385 |
+
|
386 |
+
| Metric | Value |
|
387 |
+
|:--------------------|:-----------|
|
388 |
+
| cosine_accuracy@1 | 0.7171 |
|
389 |
+
| cosine_accuracy@3 | 0.8314 |
|
390 |
+
| cosine_accuracy@5 | 0.87 |
|
391 |
+
| cosine_accuracy@10 | 0.9143 |
|
392 |
+
| cosine_precision@1 | 0.7171 |
|
393 |
+
| cosine_precision@3 | 0.2771 |
|
394 |
+
| cosine_precision@5 | 0.174 |
|
395 |
+
| cosine_precision@10 | 0.0914 |
|
396 |
+
| cosine_recall@1 | 0.7171 |
|
397 |
+
| cosine_recall@3 | 0.8314 |
|
398 |
+
| cosine_recall@5 | 0.87 |
|
399 |
+
| cosine_recall@10 | 0.9143 |
|
400 |
+
| cosine_ndcg@10 | 0.8152 |
|
401 |
+
| cosine_mrr@10 | 0.7836 |
|
402 |
+
| **cosine_map@100** | **0.7867** |
|
403 |
+
|
404 |
+
#### Information Retrieval
|
405 |
+
* Dataset: `dim_768`
|
406 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
407 |
+
|
408 |
+
| Metric | Value |
|
409 |
+
|:--------------------|:-----------|
|
410 |
+
| cosine_accuracy@1 | 0.7129 |
|
411 |
+
| cosine_accuracy@3 | 0.8343 |
|
412 |
+
| cosine_accuracy@5 | 0.8657 |
|
413 |
+
| cosine_accuracy@10 | 0.91 |
|
414 |
+
| cosine_precision@1 | 0.7129 |
|
415 |
+
| cosine_precision@3 | 0.2781 |
|
416 |
+
| cosine_precision@5 | 0.1731 |
|
417 |
+
| cosine_precision@10 | 0.091 |
|
418 |
+
| cosine_recall@1 | 0.7129 |
|
419 |
+
| cosine_recall@3 | 0.8343 |
|
420 |
+
| cosine_recall@5 | 0.8657 |
|
421 |
+
| cosine_recall@10 | 0.91 |
|
422 |
+
| cosine_ndcg@10 | 0.8122 |
|
423 |
+
| cosine_mrr@10 | 0.7809 |
|
424 |
+
| **cosine_map@100** | **0.7843** |
|
425 |
+
|
426 |
+
#### Information Retrieval
|
427 |
+
* Dataset: `dim_512`
|
428 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
429 |
+
|
430 |
+
| Metric | Value |
|
431 |
+
|:--------------------|:-----------|
|
432 |
+
| cosine_accuracy@1 | 0.7114 |
|
433 |
+
| cosine_accuracy@3 | 0.8357 |
|
434 |
+
| cosine_accuracy@5 | 0.8643 |
|
435 |
+
| cosine_accuracy@10 | 0.91 |
|
436 |
+
| cosine_precision@1 | 0.7114 |
|
437 |
+
| cosine_precision@3 | 0.2786 |
|
438 |
+
| cosine_precision@5 | 0.1729 |
|
439 |
+
| cosine_precision@10 | 0.091 |
|
440 |
+
| cosine_recall@1 | 0.7114 |
|
441 |
+
| cosine_recall@3 | 0.8357 |
|
442 |
+
| cosine_recall@5 | 0.8643 |
|
443 |
+
| cosine_recall@10 | 0.91 |
|
444 |
+
| cosine_ndcg@10 | 0.811 |
|
445 |
+
| cosine_mrr@10 | 0.7793 |
|
446 |
+
| **cosine_map@100** | **0.7827** |
|
447 |
+
|
448 |
+
#### Information Retrieval
|
449 |
+
* Dataset: `dim_384`
|
450 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
451 |
+
|
452 |
+
| Metric | Value |
|
453 |
+
|:--------------------|:-----------|
|
454 |
+
| cosine_accuracy@1 | 0.7143 |
|
455 |
+
| cosine_accuracy@3 | 0.8329 |
|
456 |
+
| cosine_accuracy@5 | 0.8629 |
|
457 |
+
| cosine_accuracy@10 | 0.9129 |
|
458 |
+
| cosine_precision@1 | 0.7143 |
|
459 |
+
| cosine_precision@3 | 0.2776 |
|
460 |
+
| cosine_precision@5 | 0.1726 |
|
461 |
+
| cosine_precision@10 | 0.0913 |
|
462 |
+
| cosine_recall@1 | 0.7143 |
|
463 |
+
| cosine_recall@3 | 0.8329 |
|
464 |
+
| cosine_recall@5 | 0.8629 |
|
465 |
+
| cosine_recall@10 | 0.9129 |
|
466 |
+
| cosine_ndcg@10 | 0.8126 |
|
467 |
+
| cosine_mrr@10 | 0.7806 |
|
468 |
+
| **cosine_map@100** | **0.7838** |
|
469 |
+
|
470 |
+
<!--
|
471 |
+
## Bias, Risks and Limitations
|
472 |
+
|
473 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
474 |
+
-->
|
475 |
+
|
476 |
+
<!--
|
477 |
+
### Recommendations
|
478 |
+
|
479 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
480 |
+
-->
|
481 |
+
|
482 |
+
## Training Details
|
483 |
+
|
484 |
+
### Training Dataset
|
485 |
+
|
486 |
+
#### Unnamed Dataset
|
487 |
+
|
488 |
+
|
489 |
+
* Size: 6,300 training samples
|
490 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
491 |
+
* Approximate statistics based on the first 1000 samples:
|
492 |
+
| | positive | anchor |
|
493 |
+
|:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
494 |
+
| type | string | string |
|
495 |
+
| details | <ul><li>min: 11 tokens</li><li>mean: 51.97 tokens</li><li>max: 1146 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 21.63 tokens</li><li>max: 47 tokens</li></ul> |
|
496 |
+
* Samples:
|
497 |
+
| positive | anchor |
|
498 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
|
499 |
+
| <code>From fiscal year 2022 to 2023, the cost of revenue as a percentage of total net revenue decreased by 3 percent.</code> | <code>What was the percentage change in cost of revenue as a percentage of total net revenue from fiscal year 2022 to 2023?</code> |
|
500 |
+
| <code> •Operating income increased $321 million, or 2%, to $18.1 billion versus year ago due to the increase in net sales, partially offset by a modest decrease in operating margin.</code> | <code>What factors contributed to the increase in operating income for Procter & Gamble in 2023?</code> |
|
501 |
+
| <code>market specific brands including 'Aurrera,' 'Lider,' and 'PhonePe.'</code> | <code>What specific brands does Walmart International market?</code> |
|
502 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
503 |
+
```json
|
504 |
+
{
|
505 |
+
"loss": "MultipleNegativesRankingLoss",
|
506 |
+
"matryoshka_dims": [
|
507 |
+
1024,
|
508 |
+
768,
|
509 |
+
512,
|
510 |
+
384
|
511 |
+
],
|
512 |
+
"matryoshka_weights": [
|
513 |
+
1,
|
514 |
+
1,
|
515 |
+
1,
|
516 |
+
1
|
517 |
+
],
|
518 |
+
"n_dims_per_step": -1
|
519 |
+
}
|
520 |
+
```
|
521 |
+
|
522 |
+
### Training Hyperparameters
|
523 |
+
#### Non-Default Hyperparameters
|
524 |
+
|
525 |
+
- `eval_strategy`: epoch
|
526 |
+
- `per_device_train_batch_size`: 4
|
527 |
+
- `per_device_eval_batch_size`: 2
|
528 |
+
- `gradient_accumulation_steps`: 2
|
529 |
+
- `learning_rate`: 2e-05
|
530 |
+
- `num_train_epochs`: 4
|
531 |
+
- `lr_scheduler_type`: cosine
|
532 |
+
- `warmup_ratio`: 0.1
|
533 |
+
- `bf16`: True
|
534 |
+
- `tf32`: True
|
535 |
+
- `load_best_model_at_end`: True
|
536 |
+
- `optim`: adamw_torch_fused
|
537 |
+
- `batch_sampler`: no_duplicates
|
538 |
+
|
539 |
+
#### All Hyperparameters
|
540 |
+
<details><summary>Click to expand</summary>
|
541 |
+
|
542 |
+
- `overwrite_output_dir`: False
|
543 |
+
- `do_predict`: False
|
544 |
+
- `eval_strategy`: epoch
|
545 |
+
- `prediction_loss_only`: True
|
546 |
+
- `per_device_train_batch_size`: 4
|
547 |
+
- `per_device_eval_batch_size`: 2
|
548 |
+
- `per_gpu_train_batch_size`: None
|
549 |
+
- `per_gpu_eval_batch_size`: None
|
550 |
+
- `gradient_accumulation_steps`: 2
|
551 |
+
- `eval_accumulation_steps`: None
|
552 |
+
- `learning_rate`: 2e-05
|
553 |
+
- `weight_decay`: 0.0
|
554 |
+
- `adam_beta1`: 0.9
|
555 |
+
- `adam_beta2`: 0.999
|
556 |
+
- `adam_epsilon`: 1e-08
|
557 |
+
- `max_grad_norm`: 1.0
|
558 |
+
- `num_train_epochs`: 4
|
559 |
+
- `max_steps`: -1
|
560 |
+
- `lr_scheduler_type`: cosine
|
561 |
+
- `lr_scheduler_kwargs`: {}
|
562 |
+
- `warmup_ratio`: 0.1
|
563 |
+
- `warmup_steps`: 0
|
564 |
+
- `log_level`: passive
|
565 |
+
- `log_level_replica`: warning
|
566 |
+
- `log_on_each_node`: True
|
567 |
+
- `logging_nan_inf_filter`: True
|
568 |
+
- `save_safetensors`: True
|
569 |
+
- `save_on_each_node`: False
|
570 |
+
- `save_only_model`: False
|
571 |
+
- `restore_callback_states_from_checkpoint`: False
|
572 |
+
- `no_cuda`: False
|
573 |
+
- `use_cpu`: False
|
574 |
+
- `use_mps_device`: False
|
575 |
+
- `seed`: 42
|
576 |
+
- `data_seed`: None
|
577 |
+
- `jit_mode_eval`: False
|
578 |
+
- `use_ipex`: False
|
579 |
+
- `bf16`: True
|
580 |
+
- `fp16`: False
|
581 |
+
- `fp16_opt_level`: O1
|
582 |
+
- `half_precision_backend`: auto
|
583 |
+
- `bf16_full_eval`: False
|
584 |
+
- `fp16_full_eval`: False
|
585 |
+
- `tf32`: True
|
586 |
+
- `local_rank`: 0
|
587 |
+
- `ddp_backend`: None
|
588 |
+
- `tpu_num_cores`: None
|
589 |
+
- `tpu_metrics_debug`: False
|
590 |
+
- `debug`: []
|
591 |
+
- `dataloader_drop_last`: False
|
592 |
+
- `dataloader_num_workers`: 0
|
593 |
+
- `dataloader_prefetch_factor`: None
|
594 |
+
- `past_index`: -1
|
595 |
+
- `disable_tqdm`: False
|
596 |
+
- `remove_unused_columns`: True
|
597 |
+
- `label_names`: None
|
598 |
+
- `load_best_model_at_end`: True
|
599 |
+
- `ignore_data_skip`: False
|
600 |
+
- `fsdp`: []
|
601 |
+
- `fsdp_min_num_params`: 0
|
602 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
603 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
604 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
605 |
+
- `deepspeed`: None
|
606 |
+
- `label_smoothing_factor`: 0.0
|
607 |
+
- `optim`: adamw_torch_fused
|
608 |
+
- `optim_args`: None
|
609 |
+
- `adafactor`: False
|
610 |
+
- `group_by_length`: False
|
611 |
+
- `length_column_name`: length
|
612 |
+
- `ddp_find_unused_parameters`: None
|
613 |
+
- `ddp_bucket_cap_mb`: None
|
614 |
+
- `ddp_broadcast_buffers`: False
|
615 |
+
- `dataloader_pin_memory`: True
|
616 |
+
- `dataloader_persistent_workers`: False
|
617 |
+
- `skip_memory_metrics`: True
|
618 |
+
- `use_legacy_prediction_loop`: False
|
619 |
+
- `push_to_hub`: False
|
620 |
+
- `resume_from_checkpoint`: None
|
621 |
+
- `hub_model_id`: None
|
622 |
+
- `hub_strategy`: every_save
|
623 |
+
- `hub_private_repo`: False
|
624 |
+
- `hub_always_push`: False
|
625 |
+
- `gradient_checkpointing`: False
|
626 |
+
- `gradient_checkpointing_kwargs`: None
|
627 |
+
- `include_inputs_for_metrics`: False
|
628 |
+
- `eval_do_concat_batches`: True
|
629 |
+
- `fp16_backend`: auto
|
630 |
+
- `push_to_hub_model_id`: None
|
631 |
+
- `push_to_hub_organization`: None
|
632 |
+
- `mp_parameters`:
|
633 |
+
- `auto_find_batch_size`: False
|
634 |
+
- `full_determinism`: False
|
635 |
+
- `torchdynamo`: None
|
636 |
+
- `ray_scope`: last
|
637 |
+
- `ddp_timeout`: 1800
|
638 |
+
- `torch_compile`: False
|
639 |
+
- `torch_compile_backend`: None
|
640 |
+
- `torch_compile_mode`: None
|
641 |
+
- `dispatch_batches`: None
|
642 |
+
- `split_batches`: None
|
643 |
+
- `include_tokens_per_second`: False
|
644 |
+
- `include_num_input_tokens_seen`: False
|
645 |
+
- `neftune_noise_alpha`: None
|
646 |
+
- `optim_target_modules`: None
|
647 |
+
- `batch_eval_metrics`: False
|
648 |
+
- `batch_sampler`: no_duplicates
|
649 |
+
- `multi_dataset_batch_sampler`: proportional
|
650 |
+
|
651 |
+
</details>
|
652 |
+
|
653 |
+
### Training Logs
|
654 |
+
<details><summary>Click to expand</summary>
|
655 |
+
|
656 |
+
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_384_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
|
657 |
+
|:----------:|:--------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
658 |
+
| 0.0127 | 10 | 0.2059 | - | - | - | - |
|
659 |
+
| 0.0254 | 20 | 0.2612 | - | - | - | - |
|
660 |
+
| 0.0381 | 30 | 0.0873 | - | - | - | - |
|
661 |
+
| 0.0508 | 40 | 0.1352 | - | - | - | - |
|
662 |
+
| 0.0635 | 50 | 0.156 | - | - | - | - |
|
663 |
+
| 0.0762 | 60 | 0.0407 | - | - | - | - |
|
664 |
+
| 0.0889 | 70 | 0.09 | - | - | - | - |
|
665 |
+
| 0.1016 | 80 | 0.027 | - | - | - | - |
|
666 |
+
| 0.1143 | 90 | 0.0978 | - | - | - | - |
|
667 |
+
| 0.1270 | 100 | 0.0105 | - | - | - | - |
|
668 |
+
| 0.1397 | 110 | 0.0402 | - | - | - | - |
|
669 |
+
| 0.1524 | 120 | 0.0745 | - | - | - | - |
|
670 |
+
| 0.1651 | 130 | 0.0655 | - | - | - | - |
|
671 |
+
| 0.1778 | 140 | 0.0075 | - | - | - | - |
|
672 |
+
| 0.1905 | 150 | 0.0141 | - | - | - | - |
|
673 |
+
| 0.2032 | 160 | 0.0615 | - | - | - | - |
|
674 |
+
| 0.2159 | 170 | 0.0029 | - | - | - | - |
|
675 |
+
| 0.2286 | 180 | 0.0269 | - | - | - | - |
|
676 |
+
| 0.2413 | 190 | 0.0724 | - | - | - | - |
|
677 |
+
| 0.2540 | 200 | 0.0218 | - | - | - | - |
|
678 |
+
| 0.2667 | 210 | 0.0027 | - | - | - | - |
|
679 |
+
| 0.2794 | 220 | 0.007 | - | - | - | - |
|
680 |
+
| 0.2921 | 230 | 0.0814 | - | - | - | - |
|
681 |
+
| 0.3048 | 240 | 0.0326 | - | - | - | - |
|
682 |
+
| 0.3175 | 250 | 0.0061 | - | - | - | - |
|
683 |
+
| 0.3302 | 260 | 0.0471 | - | - | - | - |
|
684 |
+
| 0.3429 | 270 | 0.0115 | - | - | - | - |
|
685 |
+
| 0.3556 | 280 | 0.0021 | - | - | - | - |
|
686 |
+
| 0.3683 | 290 | 0.0975 | - | - | - | - |
|
687 |
+
| 0.3810 | 300 | 0.0572 | - | - | - | - |
|
688 |
+
| 0.3937 | 310 | 0.0125 | - | - | - | - |
|
689 |
+
| 0.4063 | 320 | 0.04 | - | - | - | - |
|
690 |
+
| 0.4190 | 330 | 0.0023 | - | - | - | - |
|
691 |
+
| 0.4317 | 340 | 0.0121 | - | - | - | - |
|
692 |
+
| 0.4444 | 350 | 0.0116 | - | - | - | - |
|
693 |
+
| 0.4571 | 360 | 0.0059 | - | - | - | - |
|
694 |
+
| 0.4698 | 370 | 0.0217 | - | - | - | - |
|
695 |
+
| 0.4825 | 380 | 0.0294 | - | - | - | - |
|
696 |
+
| 0.4952 | 390 | 0.1102 | - | - | - | - |
|
697 |
+
| 0.5079 | 400 | 0.0103 | - | - | - | - |
|
698 |
+
| 0.5206 | 410 | 0.0023 | - | - | - | - |
|
699 |
+
| 0.5333 | 420 | 0.0157 | - | - | - | - |
|
700 |
+
| 0.5460 | 430 | 0.0805 | - | - | - | - |
|
701 |
+
| 0.5587 | 440 | 0.0168 | - | - | - | - |
|
702 |
+
| 0.5714 | 450 | 0.1279 | - | - | - | - |
|
703 |
+
| 0.5841 | 460 | 0.2012 | - | - | - | - |
|
704 |
+
| 0.5968 | 470 | 0.0436 | - | - | - | - |
|
705 |
+
| 0.6095 | 480 | 0.0204 | - | - | - | - |
|
706 |
+
| 0.6222 | 490 | 0.0097 | - | - | - | - |
|
707 |
+
| 0.6349 | 500 | 0.0013 | - | - | - | - |
|
708 |
+
| 0.6476 | 510 | 0.0042 | - | - | - | - |
|
709 |
+
| 0.6603 | 520 | 0.0034 | - | - | - | - |
|
710 |
+
| 0.6730 | 530 | 0.0226 | - | - | - | - |
|
711 |
+
| 0.6857 | 540 | 0.0267 | - | - | - | - |
|
712 |
+
| 0.6984 | 550 | 0.0007 | - | - | - | - |
|
713 |
+
| 0.7111 | 560 | 0.0766 | - | - | - | - |
|
714 |
+
| 0.7238 | 570 | 0.2174 | - | - | - | - |
|
715 |
+
| 0.7365 | 580 | 0.0089 | - | - | - | - |
|
716 |
+
| 0.7492 | 590 | 0.0794 | - | - | - | - |
|
717 |
+
| 0.7619 | 600 | 0.0031 | - | - | - | - |
|
718 |
+
| 0.7746 | 610 | 0.0499 | - | - | - | - |
|
719 |
+
| 0.7873 | 620 | 0.0105 | - | - | - | - |
|
720 |
+
| 0.8 | 630 | 0.0097 | - | - | - | - |
|
721 |
+
| 0.8127 | 640 | 0.0028 | - | - | - | - |
|
722 |
+
| 0.8254 | 650 | 0.0029 | - | - | - | - |
|
723 |
+
| 0.8381 | 660 | 0.1811 | - | - | - | - |
|
724 |
+
| 0.8508 | 670 | 0.064 | - | - | - | - |
|
725 |
+
| 0.8635 | 680 | 0.0139 | - | - | - | - |
|
726 |
+
| 0.8762 | 690 | 0.055 | - | - | - | - |
|
727 |
+
| 0.8889 | 700 | 0.0013 | - | - | - | - |
|
728 |
+
| 0.9016 | 710 | 0.0402 | - | - | - | - |
|
729 |
+
| 0.9143 | 720 | 0.0824 | - | - | - | - |
|
730 |
+
| 0.9270 | 730 | 0.03 | - | - | - | - |
|
731 |
+
| 0.9397 | 740 | 0.0337 | - | - | - | - |
|
732 |
+
| 0.9524 | 750 | 0.1192 | - | - | - | - |
|
733 |
+
| 0.9651 | 760 | 0.0039 | - | - | - | - |
|
734 |
+
| 0.9778 | 770 | 0.004 | - | - | - | - |
|
735 |
+
| 0.9905 | 780 | 0.1413 | - | - | - | - |
|
736 |
+
| 0.9994 | 787 | - | 0.7851 | 0.7794 | 0.7822 | 0.7863 |
|
737 |
+
| 1.0032 | 790 | 0.019 | - | - | - | - |
|
738 |
+
| 1.0159 | 800 | 0.0587 | - | - | - | - |
|
739 |
+
| 1.0286 | 810 | 0.0186 | - | - | - | - |
|
740 |
+
| 1.0413 | 820 | 0.0018 | - | - | - | - |
|
741 |
+
| 1.0540 | 830 | 0.0631 | - | - | - | - |
|
742 |
+
| 1.0667 | 840 | 0.0127 | - | - | - | - |
|
743 |
+
| 1.0794 | 850 | 0.0037 | - | - | - | - |
|
744 |
+
| 1.0921 | 860 | 0.0029 | - | - | - | - |
|
745 |
+
| 1.1048 | 870 | 0.1437 | - | - | - | - |
|
746 |
+
| 1.1175 | 880 | 0.0015 | - | - | - | - |
|
747 |
+
| 1.1302 | 890 | 0.0024 | - | - | - | - |
|
748 |
+
| 1.1429 | 900 | 0.0133 | - | - | - | - |
|
749 |
+
| 1.1556 | 910 | 0.0245 | - | - | - | - |
|
750 |
+
| 1.1683 | 920 | 0.0017 | - | - | - | - |
|
751 |
+
| 1.1810 | 930 | 0.0007 | - | - | - | - |
|
752 |
+
| 1.1937 | 940 | 0.002 | - | - | - | - |
|
753 |
+
| 1.2063 | 950 | 0.0044 | - | - | - | - |
|
754 |
+
| 1.2190 | 960 | 0.0009 | - | - | - | - |
|
755 |
+
| 1.2317 | 970 | 0.01 | - | - | - | - |
|
756 |
+
| 1.2444 | 980 | 0.0026 | - | - | - | - |
|
757 |
+
| 1.2571 | 990 | 0.0017 | - | - | - | - |
|
758 |
+
| 1.2698 | 1000 | 0.0014 | - | - | - | - |
|
759 |
+
| 1.2825 | 1010 | 0.0009 | - | - | - | - |
|
760 |
+
| 1.2952 | 1020 | 0.0829 | - | - | - | - |
|
761 |
+
| 1.3079 | 1030 | 0.0011 | - | - | - | - |
|
762 |
+
| 1.3206 | 1040 | 0.012 | - | - | - | - |
|
763 |
+
| 1.3333 | 1050 | 0.0019 | - | - | - | - |
|
764 |
+
| 1.3460 | 1060 | 0.0007 | - | - | - | - |
|
765 |
+
| 1.3587 | 1070 | 0.0141 | - | - | - | - |
|
766 |
+
| 1.3714 | 1080 | 0.0003 | - | - | - | - |
|
767 |
+
| 1.3841 | 1090 | 0.001 | - | - | - | - |
|
768 |
+
| 1.3968 | 1100 | 0.0005 | - | - | - | - |
|
769 |
+
| 1.4095 | 1110 | 0.0031 | - | - | - | - |
|
770 |
+
| 1.4222 | 1120 | 0.0004 | - | - | - | - |
|
771 |
+
| 1.4349 | 1130 | 0.0054 | - | - | - | - |
|
772 |
+
| 1.4476 | 1140 | 0.0003 | - | - | - | - |
|
773 |
+
| 1.4603 | 1150 | 0.0007 | - | - | - | - |
|
774 |
+
| 1.4730 | 1160 | 0.0009 | - | - | - | - |
|
775 |
+
| 1.4857 | 1170 | 0.001 | - | - | - | - |
|
776 |
+
| 1.4984 | 1180 | 0.0006 | - | - | - | - |
|
777 |
+
| 1.5111 | 1190 | 0.0046 | - | - | - | - |
|
778 |
+
| 1.5238 | 1200 | 0.0003 | - | - | - | - |
|
779 |
+
| 1.5365 | 1210 | 0.0002 | - | - | - | - |
|
780 |
+
| 1.5492 | 1220 | 0.004 | - | - | - | - |
|
781 |
+
| 1.5619 | 1230 | 0.0017 | - | - | - | - |
|
782 |
+
| 1.5746 | 1240 | 0.0003 | - | - | - | - |
|
783 |
+
| 1.5873 | 1250 | 0.0027 | - | - | - | - |
|
784 |
+
| 1.6 | 1260 | 0.1134 | - | - | - | - |
|
785 |
+
| 1.6127 | 1270 | 0.0007 | - | - | - | - |
|
786 |
+
| 1.6254 | 1280 | 0.0005 | - | - | - | - |
|
787 |
+
| 1.6381 | 1290 | 0.0008 | - | - | - | - |
|
788 |
+
| 1.6508 | 1300 | 0.0001 | - | - | - | - |
|
789 |
+
| 1.6635 | 1310 | 0.0023 | - | - | - | - |
|
790 |
+
| 1.6762 | 1320 | 0.0005 | - | - | - | - |
|
791 |
+
| 1.6889 | 1330 | 0.0004 | - | - | - | - |
|
792 |
+
| 1.7016 | 1340 | 0.0003 | - | - | - | - |
|
793 |
+
| 1.7143 | 1350 | 0.0347 | - | - | - | - |
|
794 |
+
| 1.7270 | 1360 | 0.0339 | - | - | - | - |
|
795 |
+
| 1.7397 | 1370 | 0.0003 | - | - | - | - |
|
796 |
+
| 1.7524 | 1380 | 0.0005 | - | - | - | - |
|
797 |
+
| 1.7651 | 1390 | 0.0002 | - | - | - | - |
|
798 |
+
| 1.7778 | 1400 | 0.0031 | - | - | - | - |
|
799 |
+
| 1.7905 | 1410 | 0.0002 | - | - | - | - |
|
800 |
+
| 1.8032 | 1420 | 0.0012 | - | - | - | - |
|
801 |
+
| 1.8159 | 1430 | 0.0002 | - | - | - | - |
|
802 |
+
| 1.8286 | 1440 | 0.0002 | - | - | - | - |
|
803 |
+
| 1.8413 | 1450 | 0.0004 | - | - | - | - |
|
804 |
+
| 1.8540 | 1460 | 0.011 | - | - | - | - |
|
805 |
+
| 1.8667 | 1470 | 0.0824 | - | - | - | - |
|
806 |
+
| 1.8794 | 1480 | 0.0003 | - | - | - | - |
|
807 |
+
| 1.8921 | 1490 | 0.0004 | - | - | - | - |
|
808 |
+
| 1.9048 | 1500 | 0.0006 | - | - | - | - |
|
809 |
+
| 1.9175 | 1510 | 0.015 | - | - | - | - |
|
810 |
+
| 1.9302 | 1520 | 0.0004 | - | - | - | - |
|
811 |
+
| 1.9429 | 1530 | 0.0004 | - | - | - | - |
|
812 |
+
| 1.9556 | 1540 | 0.0011 | - | - | - | - |
|
813 |
+
| 1.9683 | 1550 | 0.0003 | - | - | - | - |
|
814 |
+
| 1.9810 | 1560 | 0.0006 | - | - | - | - |
|
815 |
+
| 1.9937 | 1570 | 0.0042 | - | - | - | - |
|
816 |
+
| 2.0 | 1575 | - | 0.7862 | 0.7855 | 0.7852 | 0.7878 |
|
817 |
+
| 2.0063 | 1580 | 0.0005 | - | - | - | - |
|
818 |
+
| 2.0190 | 1590 | 0.002 | - | - | - | - |
|
819 |
+
| 2.0317 | 1600 | 0.0013 | - | - | - | - |
|
820 |
+
| 2.0444 | 1610 | 0.0002 | - | - | - | - |
|
821 |
+
| 2.0571 | 1620 | 0.0035 | - | - | - | - |
|
822 |
+
| 2.0698 | 1630 | 0.0004 | - | - | - | - |
|
823 |
+
| 2.0825 | 1640 | 0.0002 | - | - | - | - |
|
824 |
+
| 2.0952 | 1650 | 0.0032 | - | - | - | - |
|
825 |
+
| 2.1079 | 1660 | 0.0916 | - | - | - | - |
|
826 |
+
| 2.1206 | 1670 | 0.0002 | - | - | - | - |
|
827 |
+
| 2.1333 | 1680 | 0.0006 | - | - | - | - |
|
828 |
+
| 2.1460 | 1690 | 0.0002 | - | - | - | - |
|
829 |
+
| 2.1587 | 1700 | 0.0003 | - | - | - | - |
|
830 |
+
| 2.1714 | 1710 | 0.0001 | - | - | - | - |
|
831 |
+
| 2.1841 | 1720 | 0.0001 | - | - | - | - |
|
832 |
+
| 2.1968 | 1730 | 0.0004 | - | - | - | - |
|
833 |
+
| 2.2095 | 1740 | 0.0004 | - | - | - | - |
|
834 |
+
| 2.2222 | 1750 | 0.0001 | - | - | - | - |
|
835 |
+
| 2.2349 | 1760 | 0.0002 | - | - | - | - |
|
836 |
+
| 2.2476 | 1770 | 0.0007 | - | - | - | - |
|
837 |
+
| 2.2603 | 1780 | 0.0001 | - | - | - | - |
|
838 |
+
| 2.2730 | 1790 | 0.0002 | - | - | - | - |
|
839 |
+
| 2.2857 | 1800 | 0.0004 | - | - | - | - |
|
840 |
+
| 2.2984 | 1810 | 0.0711 | - | - | - | - |
|
841 |
+
| 2.3111 | 1820 | 0.0001 | - | - | - | - |
|
842 |
+
| 2.3238 | 1830 | 0.0005 | - | - | - | - |
|
843 |
+
| 2.3365 | 1840 | 0.0004 | - | - | - | - |
|
844 |
+
| 2.3492 | 1850 | 0.0001 | - | - | - | - |
|
845 |
+
| 2.3619 | 1860 | 0.0005 | - | - | - | - |
|
846 |
+
| 2.3746 | 1870 | 0.0003 | - | - | - | - |
|
847 |
+
| 2.3873 | 1880 | 0.0001 | - | - | - | - |
|
848 |
+
| 2.4 | 1890 | 0.0002 | - | - | - | - |
|
849 |
+
| 2.4127 | 1900 | 0.0001 | - | - | - | - |
|
850 |
+
| 2.4254 | 1910 | 0.0002 | - | - | - | - |
|
851 |
+
| 2.4381 | 1920 | 0.0002 | - | - | - | - |
|
852 |
+
| 2.4508 | 1930 | 0.0002 | - | - | - | - |
|
853 |
+
| 2.4635 | 1940 | 0.0004 | - | - | - | - |
|
854 |
+
| 2.4762 | 1950 | 0.0001 | - | - | - | - |
|
855 |
+
| 2.4889 | 1960 | 0.0002 | - | - | - | - |
|
856 |
+
| 2.5016 | 1970 | 0.0002 | - | - | - | - |
|
857 |
+
| 2.5143 | 1980 | 0.0001 | - | - | - | - |
|
858 |
+
| 2.5270 | 1990 | 0.0001 | - | - | - | - |
|
859 |
+
| 2.5397 | 2000 | 0.0002 | - | - | - | - |
|
860 |
+
| 2.5524 | 2010 | 0.0023 | - | - | - | - |
|
861 |
+
| 2.5651 | 2020 | 0.0002 | - | - | - | - |
|
862 |
+
| 2.5778 | 2030 | 0.0001 | - | - | - | - |
|
863 |
+
| 2.5905 | 2040 | 0.0003 | - | - | - | - |
|
864 |
+
| 2.6032 | 2050 | 0.0003 | - | - | - | - |
|
865 |
+
| 2.6159 | 2060 | 0.0002 | - | - | - | - |
|
866 |
+
| 2.6286 | 2070 | 0.0001 | - | - | - | - |
|
867 |
+
| 2.6413 | 2080 | 0.0 | - | - | - | - |
|
868 |
+
| 2.6540 | 2090 | 0.0001 | - | - | - | - |
|
869 |
+
| 2.6667 | 2100 | 0.0001 | - | - | - | - |
|
870 |
+
| 2.6794 | 2110 | 0.0001 | - | - | - | - |
|
871 |
+
| 2.6921 | 2120 | 0.0001 | - | - | - | - |
|
872 |
+
| 2.7048 | 2130 | 0.0001 | - | - | - | - |
|
873 |
+
| 2.7175 | 2140 | 0.0048 | - | - | - | - |
|
874 |
+
| 2.7302 | 2150 | 0.0005 | - | - | - | - |
|
875 |
+
| 2.7429 | 2160 | 0.0001 | - | - | - | - |
|
876 |
+
| 2.7556 | 2170 | 0.0001 | - | - | - | - |
|
877 |
+
| 2.7683 | 2180 | 0.0001 | - | - | - | - |
|
878 |
+
| 2.7810 | 2190 | 0.0001 | - | - | - | - |
|
879 |
+
| 2.7937 | 2200 | 0.0001 | - | - | - | - |
|
880 |
+
| 2.8063 | 2210 | 0.0001 | - | - | - | - |
|
881 |
+
| 2.8190 | 2220 | 0.0001 | - | - | - | - |
|
882 |
+
| 2.8317 | 2230 | 0.0002 | - | - | - | - |
|
883 |
+
| 2.8444 | 2240 | 0.0036 | - | - | - | - |
|
884 |
+
| 2.8571 | 2250 | 0.0001 | - | - | - | - |
|
885 |
+
| 2.8698 | 2260 | 0.0368 | - | - | - | - |
|
886 |
+
| 2.8825 | 2270 | 0.0003 | - | - | - | - |
|
887 |
+
| 2.8952 | 2280 | 0.0002 | - | - | - | - |
|
888 |
+
| 2.9079 | 2290 | 0.0001 | - | - | - | - |
|
889 |
+
| 2.9206 | 2300 | 0.0005 | - | - | - | - |
|
890 |
+
| 2.9333 | 2310 | 0.0001 | - | - | - | - |
|
891 |
+
| 2.9460 | 2320 | 0.0001 | - | - | - | - |
|
892 |
+
| 2.9587 | 2330 | 0.0003 | - | - | - | - |
|
893 |
+
| 2.9714 | 2340 | 0.0001 | - | - | - | - |
|
894 |
+
| 2.9841 | 2350 | 0.0001 | - | - | - | - |
|
895 |
+
| 2.9968 | 2360 | 0.0002 | - | - | - | - |
|
896 |
+
| **2.9994** | **2362** | **-** | **0.7864** | **0.7805** | **0.7838** | **0.7852** |
|
897 |
+
| 3.0095 | 2370 | 0.0025 | - | - | - | - |
|
898 |
+
| 3.0222 | 2380 | 0.0002 | - | - | - | - |
|
899 |
+
| 3.0349 | 2390 | 0.0001 | - | - | - | - |
|
900 |
+
| 3.0476 | 2400 | 0.0001 | - | - | - | - |
|
901 |
+
| 3.0603 | 2410 | 0.0001 | - | - | - | - |
|
902 |
+
| 3.0730 | 2420 | 0.0001 | - | - | - | - |
|
903 |
+
| 3.0857 | 2430 | 0.0001 | - | - | - | - |
|
904 |
+
| 3.0984 | 2440 | 0.0002 | - | - | - | - |
|
905 |
+
| 3.1111 | 2450 | 0.0116 | - | - | - | - |
|
906 |
+
| 3.1238 | 2460 | 0.0002 | - | - | - | - |
|
907 |
+
| 3.1365 | 2470 | 0.0001 | - | - | - | - |
|
908 |
+
| 3.1492 | 2480 | 0.0001 | - | - | - | - |
|
909 |
+
| 3.1619 | 2490 | 0.0001 | - | - | - | - |
|
910 |
+
| 3.1746 | 2500 | 0.0001 | - | - | - | - |
|
911 |
+
| 3.1873 | 2510 | 0.0001 | - | - | - | - |
|
912 |
+
| 3.2 | 2520 | 0.0001 | - | - | - | - |
|
913 |
+
| 3.2127 | 2530 | 0.0001 | - | - | - | - |
|
914 |
+
| 3.2254 | 2540 | 0.0001 | - | - | - | - |
|
915 |
+
| 3.2381 | 2550 | 0.0002 | - | - | - | - |
|
916 |
+
| 3.2508 | 2560 | 0.0001 | - | - | - | - |
|
917 |
+
| 3.2635 | 2570 | 0.0001 | - | - | - | - |
|
918 |
+
| 3.2762 | 2580 | 0.0001 | - | - | - | - |
|
919 |
+
| 3.2889 | 2590 | 0.0001 | - | - | - | - |
|
920 |
+
| 3.3016 | 2600 | 0.063 | - | - | - | - |
|
921 |
+
| 3.3143 | 2610 | 0.0001 | - | - | - | - |
|
922 |
+
| 3.3270 | 2620 | 0.0001 | - | - | - | - |
|
923 |
+
| 3.3397 | 2630 | 0.0001 | - | - | - | - |
|
924 |
+
| 3.3524 | 2640 | 0.0001 | - | - | - | - |
|
925 |
+
| 3.3651 | 2650 | 0.0002 | - | - | - | - |
|
926 |
+
| 3.3778 | 2660 | 0.0001 | - | - | - | - |
|
927 |
+
| 3.3905 | 2670 | 0.0001 | - | - | - | - |
|
928 |
+
| 3.4032 | 2680 | 0.0001 | - | - | - | - |
|
929 |
+
| 3.4159 | 2690 | 0.0001 | - | - | - | - |
|
930 |
+
| 3.4286 | 2700 | 0.0001 | - | - | - | - |
|
931 |
+
| 3.4413 | 2710 | 0.0001 | - | - | - | - |
|
932 |
+
| 3.4540 | 2720 | 0.0002 | - | - | - | - |
|
933 |
+
| 3.4667 | 2730 | 0.0001 | - | - | - | - |
|
934 |
+
| 3.4794 | 2740 | 0.0001 | - | - | - | - |
|
935 |
+
| 3.4921 | 2750 | 0.0001 | - | - | - | - |
|
936 |
+
| 3.5048 | 2760 | 0.0001 | - | - | - | - |
|
937 |
+
| 3.5175 | 2770 | 0.0002 | - | - | - | - |
|
938 |
+
| 3.5302 | 2780 | 0.0001 | - | - | - | - |
|
939 |
+
| 3.5429 | 2790 | 0.0001 | - | - | - | - |
|
940 |
+
| 3.5556 | 2800 | 0.0001 | - | - | - | - |
|
941 |
+
| 3.5683 | 2810 | 0.0001 | - | - | - | - |
|
942 |
+
| 3.5810 | 2820 | 0.0001 | - | - | - | - |
|
943 |
+
| 3.5937 | 2830 | 0.0001 | - | - | - | - |
|
944 |
+
| 3.6063 | 2840 | 0.0001 | - | - | - | - |
|
945 |
+
| 3.6190 | 2850 | 0.0 | - | - | - | - |
|
946 |
+
| 3.6317 | 2860 | 0.0001 | - | - | - | - |
|
947 |
+
| 3.6444 | 2870 | 0.0001 | - | - | - | - |
|
948 |
+
| 3.6571 | 2880 | 0.0001 | - | - | - | - |
|
949 |
+
| 3.6698 | 2890 | 0.0001 | - | - | - | - |
|
950 |
+
| 3.6825 | 2900 | 0.0001 | - | - | - | - |
|
951 |
+
| 3.6952 | 2910 | 0.0001 | - | - | - | - |
|
952 |
+
| 3.7079 | 2920 | 0.0001 | - | - | - | - |
|
953 |
+
| 3.7206 | 2930 | 0.0003 | - | - | - | - |
|
954 |
+
| 3.7333 | 2940 | 0.0001 | - | - | - | - |
|
955 |
+
| 3.7460 | 2950 | 0.0001 | - | - | - | - |
|
956 |
+
| 3.7587 | 2960 | 0.0001 | - | - | - | - |
|
957 |
+
| 3.7714 | 2970 | 0.0002 | - | - | - | - |
|
958 |
+
| 3.7841 | 2980 | 0.0001 | - | - | - | - |
|
959 |
+
| 3.7968 | 2990 | 0.0001 | - | - | - | - |
|
960 |
+
| 3.8095 | 3000 | 0.0001 | - | - | - | - |
|
961 |
+
| 3.8222 | 3010 | 0.0001 | - | - | - | - |
|
962 |
+
| 3.8349 | 3020 | 0.0002 | - | - | - | - |
|
963 |
+
| 3.8476 | 3030 | 0.0001 | - | - | - | - |
|
964 |
+
| 3.8603 | 3040 | 0.0001 | - | - | - | - |
|
965 |
+
| 3.8730 | 3050 | 0.0214 | - | - | - | - |
|
966 |
+
| 3.8857 | 3060 | 0.0001 | - | - | - | - |
|
967 |
+
| 3.8984 | 3070 | 0.0001 | - | - | - | - |
|
968 |
+
| 3.9111 | 3080 | 0.0001 | - | - | - | - |
|
969 |
+
| 3.9238 | 3090 | 0.0001 | - | - | - | - |
|
970 |
+
| 3.9365 | 3100 | 0.0001 | - | - | - | - |
|
971 |
+
| 3.9492 | 3110 | 0.0001 | - | - | - | - |
|
972 |
+
| 3.9619 | 3120 | 0.0001 | - | - | - | - |
|
973 |
+
| 3.9746 | 3130 | 0.0001 | - | - | - | - |
|
974 |
+
| 3.9873 | 3140 | 0.0001 | - | - | - | - |
|
975 |
+
| 3.9975 | 3148 | - | 0.7867 | 0.7838 | 0.7827 | 0.7843 |
|
976 |
+
|
977 |
+
* The bold row denotes the saved checkpoint.
|
978 |
+
</details>
|
979 |
+
|
980 |
+
### Framework Versions
|
981 |
+
- Python: 3.12.2
|
982 |
+
- Sentence Transformers: 3.0.1
|
983 |
+
- Transformers: 4.41.2
|
984 |
+
- PyTorch: 2.2.0+cu121
|
985 |
+
- Accelerate: 0.31.0
|
986 |
+
- Datasets: 2.19.1
|
987 |
+
- Tokenizers: 0.19.1
|
988 |
+
|
989 |
+
## Citation
|
990 |
+
|
991 |
+
### BibTeX
|
992 |
+
|
993 |
+
#### Sentence Transformers
|
994 |
+
```bibtex
|
995 |
+
@inproceedings{reimers-2019-sentence-bert,
|
996 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
997 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
998 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
999 |
+
month = "11",
|
1000 |
+
year = "2019",
|
1001 |
+
publisher = "Association for Computational Linguistics",
|
1002 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1003 |
+
}
|
1004 |
+
```
|
1005 |
+
|
1006 |
+
#### MatryoshkaLoss
|
1007 |
+
```bibtex
|
1008 |
+
@misc{kusupati2024matryoshka,
|
1009 |
+
title={Matryoshka Representation Learning},
|
1010 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
1011 |
+
year={2024},
|
1012 |
+
eprint={2205.13147},
|
1013 |
+
archivePrefix={arXiv},
|
1014 |
+
primaryClass={cs.LG}
|
1015 |
+
}
|
1016 |
+
```
|
1017 |
+
|
1018 |
+
#### MultipleNegativesRankingLoss
|
1019 |
+
```bibtex
|
1020 |
+
@misc{henderson2017efficient,
|
1021 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1022 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1023 |
+
year={2017},
|
1024 |
+
eprint={1705.00652},
|
1025 |
+
archivePrefix={arXiv},
|
1026 |
+
primaryClass={cs.CL}
|
1027 |
+
}
|
1028 |
+
```
|
1029 |
+
|
1030 |
+
<!--
|
1031 |
+
## Glossary
|
1032 |
+
|
1033 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1034 |
+
-->
|
1035 |
+
|
1036 |
+
<!--
|
1037 |
+
## Model Card Authors
|
1038 |
+
|
1039 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1040 |
+
-->
|
1041 |
+
|
1042 |
+
<!--
|
1043 |
+
## Model Card Contact
|
1044 |
+
|
1045 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1046 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-m3",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.41.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.2.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81846a61ec24981f9e5f74b84d9a77c27d63c8e1bb9bd20409ab2aaacd068c7c
|
3 |
+
size 2271064456
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
|
3 |
+
size 17083053
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|