hZzy's picture
Model save
ef98ea9 verified
|
raw
history blame
5.07 kB
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - trl
  - expo
  - generated_from_trainer
model-index:
  - name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-5e7
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-5e7

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4176
  • Logps: -99.8972
  • Logits: -1.7324
  • Objective: 0.4184
  • Dpo Loss: 0.6853
  • Regularize: 0.4184
  • Ranking Simple: 0.5238
  • Ranking Idealized: 0.6570
  • Ranking Idealized Expo: 0.5114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo
0.4122 0.2834 50 0.4102 -90.5614 -1.4615 0.4093 0.6915 0.4093 0.5124 0.6570 0.5114
0.374 0.5668 100 0.4073 -92.0361 -1.5521 0.4082 0.6883 0.4082 0.5145 0.6570 0.5114
0.3231 0.8503 150 0.4029 -92.8073 -1.6074 0.4087 0.6881 0.4087 0.5186 0.6570 0.5114
0.267 1.1337 200 0.4069 -94.7992 -1.6424 0.4110 0.6866 0.4110 0.5186 0.6570 0.5114
0.2432 1.4171 250 0.4108 -96.1389 -1.6721 0.4137 0.6877 0.4137 0.5196 0.6570 0.5114
0.2252 1.7005 300 0.4101 -95.6244 -1.6648 0.4138 0.6866 0.4138 0.5217 0.6570 0.5114
0.2082 1.9839 350 0.4102 -97.5255 -1.6989 0.4132 0.6863 0.4132 0.5196 0.6570 0.5114
0.1825 2.2674 400 0.4124 -97.7996 -1.6932 0.4144 0.6863 0.4144 0.5207 0.6570 0.5114
0.1504 2.5508 450 0.4149 -99.2029 -1.7113 0.4176 0.6864 0.4176 0.5217 0.6570 0.5114
0.1494 2.8342 500 0.4153 -99.1755 -1.7175 0.4182 0.6862 0.4182 0.5227 0.6570 0.5114
0.1407 3.1176 550 0.4161 -99.2997 -1.7183 0.4174 0.6856 0.4174 0.5217 0.6570 0.5114
0.1149 3.4010 600 0.4171 -99.9246 -1.7181 0.4181 0.6852 0.4181 0.5248 0.6570 0.5114
0.1108 3.6845 650 0.4178 -99.9118 -1.7315 0.4188 0.6853 0.4188 0.5248 0.6570 0.5114
0.1146 3.9679 700 0.4176 -99.8982 -1.7319 0.4187 0.6854 0.4187 0.5238 0.6570 0.5114
0.0986 4.2513 750 0.4175 -99.8694 -1.7322 0.4183 0.6853 0.4183 0.5238 0.6570 0.5114
0.1042 4.5347 800 0.4175 -99.8600 -1.7317 0.4183 0.6853 0.4183 0.5238 0.6570 0.5114
0.103 4.8181 850 0.4176 -99.8972 -1.7324 0.4184 0.6853 0.4184 0.5238 0.6570 0.5114

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1