File size: 5,068 Bytes
ef98ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- trl
- expo
- generated_from_trainer
model-index:
- name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-5e7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/nswhwv8u)
# qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-5e7

This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4176
- Logps: -99.8972
- Logits: -1.7324
- Objective: 0.4184
- Dpo Loss: 0.6853
- Regularize: 0.4184
- Ranking Simple: 0.5238
- Ranking Idealized: 0.6570
- Ranking Idealized Expo: 0.5114

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 12
- total_train_batch_size: 288
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Logps    | Logits  | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|
| 0.4122        | 0.2834 | 50   | 0.4102          | -90.5614 | -1.4615 | 0.4093    | 0.6915   | 0.4093     | 0.5124         | 0.6570            | 0.5114                 |
| 0.374         | 0.5668 | 100  | 0.4073          | -92.0361 | -1.5521 | 0.4082    | 0.6883   | 0.4082     | 0.5145         | 0.6570            | 0.5114                 |
| 0.3231        | 0.8503 | 150  | 0.4029          | -92.8073 | -1.6074 | 0.4087    | 0.6881   | 0.4087     | 0.5186         | 0.6570            | 0.5114                 |
| 0.267         | 1.1337 | 200  | 0.4069          | -94.7992 | -1.6424 | 0.4110    | 0.6866   | 0.4110     | 0.5186         | 0.6570            | 0.5114                 |
| 0.2432        | 1.4171 | 250  | 0.4108          | -96.1389 | -1.6721 | 0.4137    | 0.6877   | 0.4137     | 0.5196         | 0.6570            | 0.5114                 |
| 0.2252        | 1.7005 | 300  | 0.4101          | -95.6244 | -1.6648 | 0.4138    | 0.6866   | 0.4138     | 0.5217         | 0.6570            | 0.5114                 |
| 0.2082        | 1.9839 | 350  | 0.4102          | -97.5255 | -1.6989 | 0.4132    | 0.6863   | 0.4132     | 0.5196         | 0.6570            | 0.5114                 |
| 0.1825        | 2.2674 | 400  | 0.4124          | -97.7996 | -1.6932 | 0.4144    | 0.6863   | 0.4144     | 0.5207         | 0.6570            | 0.5114                 |
| 0.1504        | 2.5508 | 450  | 0.4149          | -99.2029 | -1.7113 | 0.4176    | 0.6864   | 0.4176     | 0.5217         | 0.6570            | 0.5114                 |
| 0.1494        | 2.8342 | 500  | 0.4153          | -99.1755 | -1.7175 | 0.4182    | 0.6862   | 0.4182     | 0.5227         | 0.6570            | 0.5114                 |
| 0.1407        | 3.1176 | 550  | 0.4161          | -99.2997 | -1.7183 | 0.4174    | 0.6856   | 0.4174     | 0.5217         | 0.6570            | 0.5114                 |
| 0.1149        | 3.4010 | 600  | 0.4171          | -99.9246 | -1.7181 | 0.4181    | 0.6852   | 0.4181     | 0.5248         | 0.6570            | 0.5114                 |
| 0.1108        | 3.6845 | 650  | 0.4178          | -99.9118 | -1.7315 | 0.4188    | 0.6853   | 0.4188     | 0.5248         | 0.6570            | 0.5114                 |
| 0.1146        | 3.9679 | 700  | 0.4176          | -99.8982 | -1.7319 | 0.4187    | 0.6854   | 0.4187     | 0.5238         | 0.6570            | 0.5114                 |
| 0.0986        | 4.2513 | 750  | 0.4175          | -99.8694 | -1.7322 | 0.4183    | 0.6853   | 0.4183     | 0.5238         | 0.6570            | 0.5114                 |
| 0.1042        | 4.5347 | 800  | 0.4175          | -99.8600 | -1.7317 | 0.4183    | 0.6853   | 0.4183     | 0.5238         | 0.6570            | 0.5114                 |
| 0.103         | 4.8181 | 850  | 0.4176          | -99.8972 | -1.7324 | 0.4184    | 0.6853   | 0.4184     | 0.5238         | 0.6570            | 0.5114                 |


### Framework versions

- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1