hZzy's picture
End of training
57a1b6c verified
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-DPO-ES-100
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-ES-100

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 226.3468
  • Logps: -80.2667
  • Logits: -0.6269
  • Objective: 213.3031
  • Dpo Loss: 213.3031
  • Regularize: 213.3031
  • Ranking Simple: 0.5399
  • Ranking Idealized: 0.5212
  • Ranking Idealized Expo: 0.5212
  • Wo Beta: 6.6215

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 144
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo Wo Beta
17.3723 0.1417 50 32.1125 -90.9520 -1.4391 31.4854 31.4854 31.4854 0.5264 0.5212 0.5212 7.6851
60.4454 0.2834 100 70.9968 -86.6000 -1.4386 70.7719 70.7719 70.7719 0.5305 0.5212 0.5212 7.5289
100.2237 0.4251 150 129.8928 -85.7303 -1.2892 126.8845 126.8845 126.8845 0.5321 0.5212 0.5212 7.4641
120.8284 0.5668 200 164.0152 -75.5542 -1.3195 159.5013 159.5013 159.5013 0.5357 0.5212 0.5212 7.1836
134.8217 0.7085 250 195.7212 -79.3891 -1.2058 190.8510 190.8510 190.8510 0.5285 0.5212 0.5212 7.2711
119.0273 0.8503 300 192.5231 -84.2971 -0.9945 188.0580 188.0580 188.0580 0.5357 0.5212 0.5212 6.9382
114.0792 0.9920 350 205.7797 -82.1125 -1.0045 192.3920 192.3920 192.3920 0.5409 0.5212 0.5212 6.9235
72.4145 1.1337 400 212.6613 -82.8156 -0.7120 204.8122 204.8122 204.8122 0.5409 0.5212 0.5212 7.0485
76.9668 1.2754 450 210.2291 -82.4190 -0.7807 203.0261 203.0261 203.0261 0.5383 0.5212 0.5212 6.9244
77.9261 1.4171 500 211.3156 -81.3728 -0.7438 202.1569 202.1569 202.1569 0.5362 0.5212 0.5212 6.8863
70.5755 1.5588 550 212.6468 -82.3296 -0.6838 200.1410 200.1410 200.1410 0.5430 0.5212 0.5212 6.7241
69.6026 1.7005 600 212.0254 -80.7129 -0.5569 196.9669 196.9669 196.9669 0.5419 0.5212 0.5212 6.6975
69.7829 1.8422 650 222.2766 -79.4968 -0.7062 209.6782 209.6782 209.6782 0.5404 0.5212 0.5212 6.6541
62.7864 1.9839 700 226.3468 -80.2667 -0.6269 213.3031 213.3031 213.3031 0.5399 0.5212 0.5212 6.6215
37.3326 2.1256 750 219.7785 -80.5665 -0.7007 208.8723 208.8723 208.8723 0.5440 0.5212 0.5212 6.7265
33.2099 2.2674 800 221.8786 -81.8901 -0.5673 207.6881 207.6881 207.6881 0.5450 0.5212 0.5212 6.6717
33.915 2.4091 850 217.6955 -81.9134 -0.5178 205.0515 205.0515 205.0515 0.5424 0.5212 0.5212 6.7249
35.3572 2.5508 900 224.5402 -81.5880 -0.4729 214.5052 214.5052 214.5052 0.5435 0.5212 0.5212 6.8278
31.032 2.6925 950 225.2907 -80.3480 -0.5542 216.5803 216.5803 216.5803 0.5419 0.5212 0.5212 6.8429

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1