qwen2.5-0.5b-expo-DPO-ES-100
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 226.3468
- Logps: -80.2667
- Logits: -0.6269
- Objective: 213.3031
- Dpo Loss: 213.3031
- Regularize: 213.3031
- Ranking Simple: 0.5399
- Ranking Idealized: 0.5212
- Ranking Idealized Expo: 0.5212
- Wo Beta: 6.6215
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta |
---|---|---|---|---|---|---|---|---|---|---|---|---|
17.3723 | 0.1417 | 50 | 32.1125 | -90.9520 | -1.4391 | 31.4854 | 31.4854 | 31.4854 | 0.5264 | 0.5212 | 0.5212 | 7.6851 |
60.4454 | 0.2834 | 100 | 70.9968 | -86.6000 | -1.4386 | 70.7719 | 70.7719 | 70.7719 | 0.5305 | 0.5212 | 0.5212 | 7.5289 |
100.2237 | 0.4251 | 150 | 129.8928 | -85.7303 | -1.2892 | 126.8845 | 126.8845 | 126.8845 | 0.5321 | 0.5212 | 0.5212 | 7.4641 |
120.8284 | 0.5668 | 200 | 164.0152 | -75.5542 | -1.3195 | 159.5013 | 159.5013 | 159.5013 | 0.5357 | 0.5212 | 0.5212 | 7.1836 |
134.8217 | 0.7085 | 250 | 195.7212 | -79.3891 | -1.2058 | 190.8510 | 190.8510 | 190.8510 | 0.5285 | 0.5212 | 0.5212 | 7.2711 |
119.0273 | 0.8503 | 300 | 192.5231 | -84.2971 | -0.9945 | 188.0580 | 188.0580 | 188.0580 | 0.5357 | 0.5212 | 0.5212 | 6.9382 |
114.0792 | 0.9920 | 350 | 205.7797 | -82.1125 | -1.0045 | 192.3920 | 192.3920 | 192.3920 | 0.5409 | 0.5212 | 0.5212 | 6.9235 |
72.4145 | 1.1337 | 400 | 212.6613 | -82.8156 | -0.7120 | 204.8122 | 204.8122 | 204.8122 | 0.5409 | 0.5212 | 0.5212 | 7.0485 |
76.9668 | 1.2754 | 450 | 210.2291 | -82.4190 | -0.7807 | 203.0261 | 203.0261 | 203.0261 | 0.5383 | 0.5212 | 0.5212 | 6.9244 |
77.9261 | 1.4171 | 500 | 211.3156 | -81.3728 | -0.7438 | 202.1569 | 202.1569 | 202.1569 | 0.5362 | 0.5212 | 0.5212 | 6.8863 |
70.5755 | 1.5588 | 550 | 212.6468 | -82.3296 | -0.6838 | 200.1410 | 200.1410 | 200.1410 | 0.5430 | 0.5212 | 0.5212 | 6.7241 |
69.6026 | 1.7005 | 600 | 212.0254 | -80.7129 | -0.5569 | 196.9669 | 196.9669 | 196.9669 | 0.5419 | 0.5212 | 0.5212 | 6.6975 |
69.7829 | 1.8422 | 650 | 222.2766 | -79.4968 | -0.7062 | 209.6782 | 209.6782 | 209.6782 | 0.5404 | 0.5212 | 0.5212 | 6.6541 |
62.7864 | 1.9839 | 700 | 226.3468 | -80.2667 | -0.6269 | 213.3031 | 213.3031 | 213.3031 | 0.5399 | 0.5212 | 0.5212 | 6.6215 |
37.3326 | 2.1256 | 750 | 219.7785 | -80.5665 | -0.7007 | 208.8723 | 208.8723 | 208.8723 | 0.5440 | 0.5212 | 0.5212 | 6.7265 |
33.2099 | 2.2674 | 800 | 221.8786 | -81.8901 | -0.5673 | 207.6881 | 207.6881 | 207.6881 | 0.5450 | 0.5212 | 0.5212 | 6.6717 |
33.915 | 2.4091 | 850 | 217.6955 | -81.9134 | -0.5178 | 205.0515 | 205.0515 | 205.0515 | 0.5424 | 0.5212 | 0.5212 | 6.7249 |
35.3572 | 2.5508 | 900 | 224.5402 | -81.5880 | -0.4729 | 214.5052 | 214.5052 | 214.5052 | 0.5435 | 0.5212 | 0.5212 | 6.8278 |
31.032 | 2.6925 | 950 | 225.2907 | -80.3480 | -0.5542 | 216.5803 | 216.5803 | 216.5803 | 0.5419 | 0.5212 | 0.5212 | 6.8429 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for hZzy/qwen2.5-0.5b-expo-DPO-ES-100
Base model
hZzy/qwen2.5-0.5b-sft-news-IFT