metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- alignment-handbook
- ndcg
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-DPO-ES-0.01
results: []
qwen2.5-0.5b-expo-DPO-ES-0.01
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 0.6894
- Logps: -99.3821
- Logits: -1.7611
- Objective: 0.6902
- Dpo Loss: 0.6902
- Regularize: 0.6902
- Ranking Simple: 0.5305
- Ranking Idealized: 0.8732
- Ranking Idealized Expo: 0.5321
- Wo Beta: 9.3575
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Dpo Loss | Logits | Logps | Validation Loss | Objective | Ranking Idealized | Ranking Idealized Expo | Ranking Simple | Regularize | Wo Beta |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6907 | 0.1417 | 50 | 0.6902 | -1.7611 | -99.3821 | 0.6894 | 0.6902 | 0.8732 | 0.5321 | 0.5305 | 0.6902 | 9.3575 |
0.6701 | 0.2834 | 100 | 0.6896 | -1.8467 | -153.5716 | 0.6837 | 0.6896 | 0.8732 | 0.5321 | 0.5518 | 0.6896 | 14.1741 |
0.637 | 0.4251 | 150 | 0.6765 | -2.4614 | -198.9269 | 0.6723 | 0.6765 | 0.8732 | 0.5321 | 0.5823 | 0.6765 | 17.2098 |
0.5833 | 0.5668 | 200 | 0.6780 | -3.3478 | -256.0312 | 0.6729 | 0.6780 | 0.8732 | 0.5321 | 0.5797 | 0.6780 | 21.7109 |
0.5439 | 0.7085 | 250 | 0.6858 | -3.6269 | -257.3546 | 0.6781 | 0.6858 | 0.8732 | 0.5321 | 0.5683 | 0.6858 | 22.9139 |
0.5077 | 0.8503 | 300 | 0.6685 | -4.6100 | -319.3935 | 0.6640 | 0.6685 | 0.8732 | 0.5321 | 0.5828 | 0.6685 | 23.6506 |
0.4786 | 0.9920 | 350 | 0.6867 | -368.7014 | -4.9192 | 0.6897 | 0.6897 | 0.6897 | 0.5751 | 0.8732 | 0.5321 | 27.7113 |
0.3619 | 1.1337 | 400 | 0.6961 | -392.7018 | -5.5801 | 0.6990 | 0.6990 | 0.6990 | 0.5849 | 0.8732 | 0.5321 | 32.0730 |
0.3679 | 1.2754 | 450 | 0.6843 | -349.2029 | -5.2450 | 0.6953 | 0.6953 | 0.6953 | 0.5885 | 0.8732 | 0.5321 | 31.3199 |
0.3662 | 1.4171 | 500 | 0.6858 | -350.7137 | -5.8233 | 0.6903 | 0.6903 | 0.6903 | 0.5890 | 0.8732 | 0.5321 | 30.2726 |
0.3485 | 1.5588 | 550 | 0.6901 | -349.5348 | -5.2492 | 0.6972 | 0.6972 | 0.6972 | 0.5719 | 0.8732 | 0.5321 | 31.1765 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1