File size: 4,317 Bytes
9f7a057
 
 
 
0fb2aea
 
 
 
 
b1acf0c
 
020572d
 
b1acf0c
0fb2aea
 
9f7a057
 
 
 
 
 
 
 
020572d
9f7a057
 
0fb2aea
9f7a057
0fb2aea
 
 
 
 
 
 
9f7a057
 
0fb2aea
9f7a057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020572d
 
 
 
 
 
 
 
 
 
 
 
 
9f7a057
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- alignment-handbook
- ndcg
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-DPO-ES-0.01
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/r1jti62c)
# qwen2.5-0.5b-expo-DPO-ES-0.01

This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6894
- Logps: -99.3821
- Logits: -1.7611
- Objective: 0.6902
- Dpo Loss: 0.6902
- Regularize: 0.6902
- Ranking Simple: 0.5305
- Ranking Idealized: 0.8732
- Ranking Idealized Expo: 0.5321
- Wo Beta: 9.3575

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Dpo Loss | Logits  | Logps     | Validation Loss | Objective | Ranking Idealized | Ranking Idealized Expo | Ranking Simple | Regularize | Wo Beta |
|:-------------:|:------:|:----:|:--------:|:-------:|:---------:|:---------------:|:---------:|:-----------------:|:----------------------:|:--------------:|:----------:|:-------:|
| 0.6907        | 0.1417 | 50   | 0.6902   | -1.7611 | -99.3821  | 0.6894          | 0.6902    | 0.8732            | 0.5321                 | 0.5305         | 0.6902     | 9.3575  |
| 0.6701        | 0.2834 | 100  | 0.6896   | -1.8467 | -153.5716 | 0.6837          | 0.6896    | 0.8732            | 0.5321                 | 0.5518         | 0.6896     | 14.1741 |
| 0.637         | 0.4251 | 150  | 0.6765   | -2.4614 | -198.9269 | 0.6723          | 0.6765    | 0.8732            | 0.5321                 | 0.5823         | 0.6765     | 17.2098 |
| 0.5833        | 0.5668 | 200  | 0.6780   | -3.3478 | -256.0312 | 0.6729          | 0.6780    | 0.8732            | 0.5321                 | 0.5797         | 0.6780     | 21.7109 |
| 0.5439        | 0.7085 | 250  | 0.6858   | -3.6269 | -257.3546 | 0.6781          | 0.6858    | 0.8732            | 0.5321                 | 0.5683         | 0.6858     | 22.9139 |
| 0.5077        | 0.8503 | 300  | 0.6685   | -4.6100 | -319.3935 | 0.6640          | 0.6685    | 0.8732            | 0.5321                 | 0.5828         | 0.6685     | 23.6506 |
| 0.4786        | 0.9920 | 350  | 0.6867   | -368.7014| -4.9192   | 0.6897          | 0.6897    | 0.6897            | 0.5751                 | 0.8732         | 0.5321     | 27.7113 |
| 0.3619        | 1.1337 | 400  | 0.6961   | -392.7018| -5.5801   | 0.6990          | 0.6990    | 0.6990            | 0.5849                 | 0.8732         | 0.5321     | 32.0730 |
| 0.3679        | 1.2754 | 450  | 0.6843   | -349.2029| -5.2450   | 0.6953          | 0.6953    | 0.6953            | 0.5885                 | 0.8732         | 0.5321     | 31.3199 |
| 0.3662        | 1.4171 | 500  | 0.6858   | -350.7137| -5.8233   | 0.6903          | 0.6903    | 0.6903            | 0.5890                 | 0.8732         | 0.5321     | 30.2726 |
| 0.3485        | 1.5588 | 550  | 0.6901   | -349.5348| -5.2492   | 0.6972          | 0.6972    | 0.6972            | 0.5719                 | 0.8732         | 0.5321     | 31.1765 |


### Framework versions

- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1