|
--- |
|
base_model: microsoft/Phi-3.5-mini-instruct |
|
library_name: peft |
|
license: mit |
|
metrics: |
|
- rouge |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: grounded-ai-rag-3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/josh-longenecker1-groundedai/grounded-ai-rag-relevance/runs/7nacy5gw) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/josh-longenecker1-groundedai/grounded-ai-rag-relevance/runs/7nacy5gw) |
|
# grounded-ai-rag-3 |
|
|
|
This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5557 |
|
- Rouge1: 1.0 |
|
- Rouge2: 0.0 |
|
- Rougel: 1.0 |
|
- Rougelsum: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 15 |
|
- training_steps: 40 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 1.8222 | 5.0 | 5 | 1.9460 | 1.0 | 0.0 | 1.0 | 1.0 | |
|
| 1.7609 | 10.0 | 10 | 1.6547 | 1.0 | 0.0 | 1.0 | 1.0 | |
|
| 1.4433 | 15.0 | 15 | 1.3821 | 1.0 | 0.0 | 1.0 | 1.0 | |
|
| 1.2307 | 20.0 | 20 | 1.1176 | 1.0 | 0.0 | 1.0 | 1.0 | |
|
| 0.9889 | 25.0 | 25 | 0.7975 | 1.0 | 0.0 | 1.0 | 1.0 | |
|
| 0.6934 | 30.0 | 30 | 0.6240 | 1.0 | 0.0 | 1.0 | 1.0 | |
|
| 0.5838 | 35.0 | 35 | 0.5633 | 1.0 | 0.0 | 1.0 | 1.0 | |
|
| 0.5625 | 40.0 | 40 | 0.5557 | 1.0 | 0.0 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.45.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |