File size: 2,761 Bytes
1f1a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ff9438
 
1f1a9f0
 
 
 
5ff9438
1f1a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58bb8d6
1f1a9f0
 
 
58bb8d6
 
1f1a9f0
 
 
5ff9438
1f1a9f0
 
 
 
 
5ff9438
 
 
 
 
 
 
 
1f1a9f0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: microsoft/Phi-3.5-mini-instruct
library_name: peft
license: mit
metrics:
- rouge
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: grounded-ai-rag-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/josh-longenecker1-groundedai/grounded-ai-rag-relevance/runs/7nacy5gw)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/josh-longenecker1-groundedai/grounded-ai-rag-relevance/runs/7nacy5gw)
# grounded-ai-rag-3

This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5557
- Rouge1: 1.0
- Rouge2: 0.0
- Rougel: 1.0
- Rougelsum: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- training_steps: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.8222        | 5.0   | 5    | 1.9460          | 1.0    | 0.0    | 1.0    | 1.0       |
| 1.7609        | 10.0  | 10   | 1.6547          | 1.0    | 0.0    | 1.0    | 1.0       |
| 1.4433        | 15.0  | 15   | 1.3821          | 1.0    | 0.0    | 1.0    | 1.0       |
| 1.2307        | 20.0  | 20   | 1.1176          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.9889        | 25.0  | 25   | 0.7975          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.6934        | 30.0  | 30   | 0.6240          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.5838        | 35.0  | 35   | 0.5633          | 1.0    | 0.0    | 1.0    | 1.0       |
| 0.5625        | 40.0  | 40   | 0.5557          | 1.0    | 0.0    | 1.0    | 1.0       |


### Framework versions

- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1