gokuls's picture
End of training
5415b31
metadata
base_model: gokuls/HBERTv1_48_L2_H64_A2
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L2_H64_A2_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.40088539104771276

HBERTv1_48_L2_H64_A2_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L2_H64_A2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1655
  • Accuracy: 0.4009

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.9873 1.0 180 3.7924 0.1190
3.6056 2.0 360 3.4147 0.1210
3.3391 3.0 540 3.2008 0.1422
3.1518 4.0 720 3.0285 0.1977
2.9855 5.0 900 2.8620 0.2356
2.8224 6.0 1080 2.7059 0.2671
2.6751 7.0 1260 2.5728 0.2986
2.5558 8.0 1440 2.4704 0.3399
2.4664 9.0 1620 2.3848 0.3566
2.3814 10.0 1800 2.3129 0.3719
2.3131 11.0 1980 2.2572 0.3792
2.2662 12.0 2160 2.2149 0.3920
2.2201 13.0 2340 2.1830 0.3935
2.1957 14.0 2520 2.1655 0.4009
2.1831 15.0 2700 2.1585 0.3994

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0