--- base_model: gokuls/HBERTv1_48_L2_H64_A2 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: HBERTv1_48_L2_H64_A2_massive results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.40088539104771276 --- # HBERTv1_48_L2_H64_A2_massive This model is a fine-tuned version of [gokuls/HBERTv1_48_L2_H64_A2](https://huggingface.co/gokuls/HBERTv1_48_L2_H64_A2) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 2.1655 - Accuracy: 0.4009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9873 | 1.0 | 180 | 3.7924 | 0.1190 | | 3.6056 | 2.0 | 360 | 3.4147 | 0.1210 | | 3.3391 | 3.0 | 540 | 3.2008 | 0.1422 | | 3.1518 | 4.0 | 720 | 3.0285 | 0.1977 | | 2.9855 | 5.0 | 900 | 2.8620 | 0.2356 | | 2.8224 | 6.0 | 1080 | 2.7059 | 0.2671 | | 2.6751 | 7.0 | 1260 | 2.5728 | 0.2986 | | 2.5558 | 8.0 | 1440 | 2.4704 | 0.3399 | | 2.4664 | 9.0 | 1620 | 2.3848 | 0.3566 | | 2.3814 | 10.0 | 1800 | 2.3129 | 0.3719 | | 2.3131 | 11.0 | 1980 | 2.2572 | 0.3792 | | 2.2662 | 12.0 | 2160 | 2.2149 | 0.3920 | | 2.2201 | 13.0 | 2340 | 2.1830 | 0.3935 | | 2.1957 | 14.0 | 2520 | 2.1655 | 0.4009 | | 2.1831 | 15.0 | 2700 | 2.1585 | 0.3994 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0