|
--- |
|
license: other |
|
base_model: nvidia/mit-b0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: model1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# model1 |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3138 |
|
- Mean Iou: 0.0868 |
|
- Mean Accuracy: 0.1217 |
|
- Overall Accuracy: 0.2285 |
|
- Accuracy Background: nan |
|
- Accuracy Ship: 0.1353 |
|
- Accuracy Small-vehicle: 0.0001 |
|
- Accuracy Tennis-court: 0.7306 |
|
- Accuracy Helicopter: nan |
|
- Accuracy Basketball-court: 0.0 |
|
- Accuracy Ground-track-field: 0.0 |
|
- Accuracy Swimming-pool: 0.0 |
|
- Accuracy Harbor: 0.5786 |
|
- Accuracy Soccer-ball-field: 0.0 |
|
- Accuracy Plane: 0.0 |
|
- Accuracy Storage-tank: 0.0 |
|
- Accuracy Baseball-diamond: 0.0 |
|
- Accuracy Large-vehicle: 0.2588 |
|
- Accuracy Bridge: 0.0 |
|
- Accuracy Roundabout: 0.0 |
|
- Iou Background: 0.0 |
|
- Iou Ship: 0.0532 |
|
- Iou Small-vehicle: 0.0001 |
|
- Iou Tennis-court: 0.7062 |
|
- Iou Helicopter: nan |
|
- Iou Basketball-court: 0.0 |
|
- Iou Ground-track-field: 0.0 |
|
- Iou Swimming-pool: 0.0 |
|
- Iou Harbor: 0.2868 |
|
- Iou Soccer-ball-field: 0.0 |
|
- Iou Plane: 0.0 |
|
- Iou Storage-tank: 0.0 |
|
- Iou Baseball-diamond: 0.0 |
|
- Iou Large-vehicle: 0.2563 |
|
- Iou Bridge: 0.0 |
|
- Iou Roundabout: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 1337 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: polynomial |
|
- training_steps: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:| |
|
| 2.069 | 1.0 | 105 | 1.4975 | 0.0942 | 0.1496 | 0.2837 | nan | 0.4327 | 0.0002 | 0.8374 | nan | 0.0 | 0.0 | 0.0 | 0.4733 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.3506 | 0.0 | 0.0 | 0.0 | 0.0794 | 0.0002 | 0.7660 | nan | 0.0 | 0.0 | 0.0 | 0.2213 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.3460 | 0.0 | 0.0 | |
|
| 1.5141 | 1.9 | 200 | 1.3138 | 0.0868 | 0.1217 | 0.2285 | nan | 0.1353 | 0.0001 | 0.7306 | nan | 0.0 | 0.0 | 0.0 | 0.5786 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2588 | 0.0 | 0.0 | 0.0 | 0.0532 | 0.0001 | 0.7062 | nan | 0.0 | 0.0 | 0.0 | 0.2868 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2563 | 0.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|