File size: 5,087 Bytes
1adee0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
model-index:
- name: model1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model1
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3138
- Mean Iou: 0.0868
- Mean Accuracy: 0.1217
- Overall Accuracy: 0.2285
- Accuracy Background: nan
- Accuracy Ship: 0.1353
- Accuracy Small-vehicle: 0.0001
- Accuracy Tennis-court: 0.7306
- Accuracy Helicopter: nan
- Accuracy Basketball-court: 0.0
- Accuracy Ground-track-field: 0.0
- Accuracy Swimming-pool: 0.0
- Accuracy Harbor: 0.5786
- Accuracy Soccer-ball-field: 0.0
- Accuracy Plane: 0.0
- Accuracy Storage-tank: 0.0
- Accuracy Baseball-diamond: 0.0
- Accuracy Large-vehicle: 0.2588
- Accuracy Bridge: 0.0
- Accuracy Roundabout: 0.0
- Iou Background: 0.0
- Iou Ship: 0.0532
- Iou Small-vehicle: 0.0001
- Iou Tennis-court: 0.7062
- Iou Helicopter: nan
- Iou Basketball-court: 0.0
- Iou Ground-track-field: 0.0
- Iou Swimming-pool: 0.0
- Iou Harbor: 0.2868
- Iou Soccer-ball-field: 0.0
- Iou Plane: 0.0
- Iou Storage-tank: 0.0
- Iou Baseball-diamond: 0.0
- Iou Large-vehicle: 0.2563
- Iou Bridge: 0.0
- Iou Roundabout: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:|
| 2.069 | 1.0 | 105 | 1.4975 | 0.0942 | 0.1496 | 0.2837 | nan | 0.4327 | 0.0002 | 0.8374 | nan | 0.0 | 0.0 | 0.0 | 0.4733 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.3506 | 0.0 | 0.0 | 0.0 | 0.0794 | 0.0002 | 0.7660 | nan | 0.0 | 0.0 | 0.0 | 0.2213 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.3460 | 0.0 | 0.0 |
| 1.5141 | 1.9 | 200 | 1.3138 | 0.0868 | 0.1217 | 0.2285 | nan | 0.1353 | 0.0001 | 0.7306 | nan | 0.0 | 0.0 | 0.0 | 0.5786 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2588 | 0.0 | 0.0 | 0.0 | 0.0532 | 0.0001 | 0.7062 | nan | 0.0 | 0.0 | 0.0 | 0.2868 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2563 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|