File size: 5,087 Bytes
1adee0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
model-index:
- name: model1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model1

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3138
- Mean Iou: 0.0868
- Mean Accuracy: 0.1217
- Overall Accuracy: 0.2285
- Accuracy Background: nan
- Accuracy Ship: 0.1353
- Accuracy Small-vehicle: 0.0001
- Accuracy Tennis-court: 0.7306
- Accuracy Helicopter: nan
- Accuracy Basketball-court: 0.0
- Accuracy Ground-track-field: 0.0
- Accuracy Swimming-pool: 0.0
- Accuracy Harbor: 0.5786
- Accuracy Soccer-ball-field: 0.0
- Accuracy Plane: 0.0
- Accuracy Storage-tank: 0.0
- Accuracy Baseball-diamond: 0.0
- Accuracy Large-vehicle: 0.2588
- Accuracy Bridge: 0.0
- Accuracy Roundabout: 0.0
- Iou Background: 0.0
- Iou Ship: 0.0532
- Iou Small-vehicle: 0.0001
- Iou Tennis-court: 0.7062
- Iou Helicopter: nan
- Iou Basketball-court: 0.0
- Iou Ground-track-field: 0.0
- Iou Swimming-pool: 0.0
- Iou Harbor: 0.2868
- Iou Soccer-ball-field: 0.0
- Iou Plane: 0.0
- Iou Storage-tank: 0.0
- Iou Baseball-diamond: 0.0
- Iou Large-vehicle: 0.2563
- Iou Bridge: 0.0
- Iou Roundabout: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 200

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:----------------------:|:---------------------:|:-------------------:|:-------------------------:|:---------------------------:|:----------------------:|:---------------:|:--------------------------:|:--------------:|:---------------------:|:-------------------------:|:----------------------:|:---------------:|:-------------------:|:--------------:|:--------:|:-----------------:|:----------------:|:--------------:|:--------------------:|:----------------------:|:-----------------:|:----------:|:---------------------:|:---------:|:----------------:|:--------------------:|:-----------------:|:----------:|:--------------:|
| 2.069         | 1.0   | 105  | 1.4975          | 0.0942   | 0.1496        | 0.2837           | nan                 | 0.4327        | 0.0002                 | 0.8374                | nan                 | 0.0                       | 0.0                         | 0.0                    | 0.4733          | 0.0002                     | 0.0            | 0.0                   | 0.0                       | 0.3506                 | 0.0             | 0.0                 | 0.0            | 0.0794   | 0.0002            | 0.7660           | nan            | 0.0                  | 0.0                    | 0.0               | 0.2213     | 0.0002                | 0.0       | 0.0              | 0.0                  | 0.3460            | 0.0        | 0.0            |
| 1.5141        | 1.9   | 200  | 1.3138          | 0.0868   | 0.1217        | 0.2285           | nan                 | 0.1353        | 0.0001                 | 0.7306                | nan                 | 0.0                       | 0.0                         | 0.0                    | 0.5786          | 0.0                        | 0.0            | 0.0                   | 0.0                       | 0.2588                 | 0.0             | 0.0                 | 0.0            | 0.0532   | 0.0001            | 0.7062           | nan            | 0.0                  | 0.0                    | 0.0               | 0.2868     | 0.0                   | 0.0       | 0.0              | 0.0                  | 0.2563            | 0.0        | 0.0            |


### Framework versions

- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1