metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold4
results: []
ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5758
- Qwk: 0.6718
- Mse: 0.5758
- Rmse: 0.7588
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 2.0 | 2 | 9.7683 | 0.0018 | 9.7683 | 3.1254 |
No log | 4.0 | 4 | 8.2498 | 0.0018 | 8.2498 | 2.8722 |
No log | 6.0 | 6 | 6.8328 | 0.0 | 6.8328 | 2.6140 |
No log | 8.0 | 8 | 5.3375 | 0.0329 | 5.3375 | 2.3103 |
8.9731 | 10.0 | 10 | 4.3556 | 0.0118 | 4.3556 | 2.0870 |
8.9731 | 12.0 | 12 | 3.5608 | 0.0040 | 3.5608 | 1.8870 |
8.9731 | 14.0 | 14 | 2.8777 | 0.0040 | 2.8777 | 1.6964 |
8.9731 | 16.0 | 16 | 2.3505 | 0.1010 | 2.3505 | 1.5331 |
8.9731 | 18.0 | 18 | 1.9685 | 0.1264 | 1.9685 | 1.4030 |
4.3314 | 20.0 | 20 | 1.6149 | 0.0734 | 1.6149 | 1.2708 |
4.3314 | 22.0 | 22 | 1.4079 | 0.1092 | 1.4079 | 1.1865 |
4.3314 | 24.0 | 24 | 1.1654 | 0.0975 | 1.1654 | 1.0796 |
4.3314 | 26.0 | 26 | 0.9621 | 0.0975 | 0.9621 | 0.9809 |
4.3314 | 28.0 | 28 | 1.0460 | 0.1775 | 1.0460 | 1.0228 |
2.3195 | 30.0 | 30 | 0.7254 | 0.4930 | 0.7254 | 0.8517 |
2.3195 | 32.0 | 32 | 0.6288 | 0.5308 | 0.6288 | 0.7930 |
2.3195 | 34.0 | 34 | 0.7271 | 0.5327 | 0.7271 | 0.8527 |
2.3195 | 36.0 | 36 | 0.5334 | 0.5459 | 0.5334 | 0.7303 |
2.3195 | 38.0 | 38 | 0.5264 | 0.5264 | 0.5264 | 0.7256 |
1.2151 | 40.0 | 40 | 0.5444 | 0.6055 | 0.5444 | 0.7378 |
1.2151 | 42.0 | 42 | 0.4974 | 0.5838 | 0.4974 | 0.7053 |
1.2151 | 44.0 | 44 | 0.4992 | 0.5834 | 0.4992 | 0.7065 |
1.2151 | 46.0 | 46 | 0.4907 | 0.6217 | 0.4907 | 0.7005 |
1.2151 | 48.0 | 48 | 0.4903 | 0.6602 | 0.4903 | 0.7002 |
0.6065 | 50.0 | 50 | 0.4976 | 0.6520 | 0.4976 | 0.7054 |
0.6065 | 52.0 | 52 | 0.4928 | 0.6757 | 0.4928 | 0.7020 |
0.6065 | 54.0 | 54 | 0.5738 | 0.6383 | 0.5738 | 0.7575 |
0.6065 | 56.0 | 56 | 0.5469 | 0.6828 | 0.5469 | 0.7395 |
0.6065 | 58.0 | 58 | 0.5523 | 0.6760 | 0.5523 | 0.7432 |
0.3084 | 60.0 | 60 | 0.5803 | 0.6420 | 0.5803 | 0.7618 |
0.3084 | 62.0 | 62 | 0.6608 | 0.6124 | 0.6608 | 0.8129 |
0.3084 | 64.0 | 64 | 0.5481 | 0.6893 | 0.5481 | 0.7404 |
0.3084 | 66.0 | 66 | 0.5452 | 0.6779 | 0.5452 | 0.7384 |
0.3084 | 68.0 | 68 | 0.6938 | 0.6277 | 0.6938 | 0.8329 |
0.1723 | 70.0 | 70 | 0.7560 | 0.6070 | 0.7560 | 0.8695 |
0.1723 | 72.0 | 72 | 0.5880 | 0.6867 | 0.5880 | 0.7668 |
0.1723 | 74.0 | 74 | 0.5626 | 0.6901 | 0.5626 | 0.7501 |
0.1723 | 76.0 | 76 | 0.6318 | 0.6317 | 0.6318 | 0.7948 |
0.1723 | 78.0 | 78 | 0.6981 | 0.6187 | 0.6981 | 0.8355 |
0.1229 | 80.0 | 80 | 0.6227 | 0.6372 | 0.6227 | 0.7891 |
0.1229 | 82.0 | 82 | 0.6047 | 0.6486 | 0.6047 | 0.7776 |
0.1229 | 84.0 | 84 | 0.6171 | 0.6511 | 0.6171 | 0.7855 |
0.1229 | 86.0 | 86 | 0.6257 | 0.6465 | 0.6257 | 0.7910 |
0.1229 | 88.0 | 88 | 0.6828 | 0.6261 | 0.6828 | 0.8263 |
0.0736 | 90.0 | 90 | 0.6638 | 0.6255 | 0.6638 | 0.8147 |
0.0736 | 92.0 | 92 | 0.5854 | 0.6629 | 0.5854 | 0.7651 |
0.0736 | 94.0 | 94 | 0.5649 | 0.6745 | 0.5649 | 0.7516 |
0.0736 | 96.0 | 96 | 0.5690 | 0.6734 | 0.5690 | 0.7543 |
0.0736 | 98.0 | 98 | 0.5707 | 0.6734 | 0.5707 | 0.7554 |
0.0687 | 100.0 | 100 | 0.5758 | 0.6718 | 0.5758 | 0.7588 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1