ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5672
  • Qwk: 0.1569
  • Mse: 2.5672
  • Rmse: 1.6023

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 8.9837 0.0 8.9837 2.9973
No log 2.0 4 7.5886 0.0 7.5886 2.7547
No log 3.0 6 6.7933 0.0 6.7933 2.6064
No log 4.0 8 5.9019 0.0334 5.9019 2.4294
4.9726 5.0 10 5.0055 0.0115 5.0055 2.2373
4.9726 6.0 12 4.2886 0.0039 4.2886 2.0709
4.9726 7.0 14 3.4374 0.0 3.4374 1.8540
4.9726 8.0 16 2.7480 0.0 2.7480 1.6577
4.9726 9.0 18 2.1294 0.0689 2.1294 1.4592
2.3566 10.0 20 1.9136 0.0664 1.9136 1.3833
2.3566 11.0 22 1.6575 0.0316 1.6575 1.2875
2.3566 12.0 24 1.5791 0.0316 1.5791 1.2566
2.3566 13.0 26 1.5508 0.0316 1.5508 1.2453
2.3566 14.0 28 2.2890 0.1589 2.2890 1.5129
1.7933 15.0 30 2.1373 0.1624 2.1373 1.4619
1.7933 16.0 32 1.5227 0.0575 1.5227 1.2340
1.7933 17.0 34 1.7374 0.1078 1.7374 1.3181
1.7933 18.0 36 2.0888 0.1489 2.0888 1.4453
1.7933 19.0 38 1.7404 0.1411 1.7404 1.3192
1.5013 20.0 40 1.8295 0.1288 1.8295 1.3526
1.5013 21.0 42 2.7252 0.0775 2.7252 1.6508
1.5013 22.0 44 2.2863 0.1148 2.2863 1.5121
1.5013 23.0 46 1.9034 0.1520 1.9034 1.3796
1.5013 24.0 48 2.4564 0.1052 2.4564 1.5673
1.0621 25.0 50 2.3437 0.1033 2.3437 1.5309
1.0621 26.0 52 2.8176 0.0791 2.8176 1.6786
1.0621 27.0 54 2.2993 0.1371 2.2993 1.5164
1.0621 28.0 56 3.3617 0.0554 3.3617 1.8335
1.0621 29.0 58 2.8583 0.0866 2.8583 1.6907
0.5724 30.0 60 2.0071 0.1854 2.0071 1.4167
0.5724 31.0 62 2.4842 0.1259 2.4842 1.5762
0.5724 32.0 64 3.6091 0.0536 3.6091 1.8998
0.5724 33.0 66 3.5167 0.0628 3.5167 1.8753
0.5724 34.0 68 2.4939 0.1330 2.4939 1.5792
0.3724 35.0 70 3.0914 0.0849 3.0914 1.7582
0.3724 36.0 72 2.7255 0.1191 2.7255 1.6509
0.3724 37.0 74 2.7631 0.1198 2.7631 1.6622
0.3724 38.0 76 2.6358 0.1352 2.6358 1.6235
0.3724 39.0 78 3.2364 0.0837 3.2364 1.7990
0.254 40.0 80 3.0060 0.0967 3.0059 1.7338
0.254 41.0 82 2.7999 0.1069 2.7999 1.6733
0.254 42.0 84 3.1689 0.0883 3.1689 1.7801
0.254 43.0 86 3.2822 0.0836 3.2822 1.8117
0.254 44.0 88 3.0970 0.0885 3.0970 1.7598
0.1736 45.0 90 2.5817 0.1349 2.5817 1.6068
0.1736 46.0 92 2.9280 0.1108 2.9280 1.7111
0.1736 47.0 94 2.9410 0.1154 2.9410 1.7149
0.1736 48.0 96 2.3168 0.1684 2.3168 1.5221
0.1736 49.0 98 2.4283 0.1632 2.4283 1.5583
0.1486 50.0 100 3.1574 0.1084 3.1574 1.7769
0.1486 51.0 102 2.9698 0.1068 2.9698 1.7233
0.1486 52.0 104 2.5049 0.1489 2.5049 1.5827
0.1486 53.0 106 3.1017 0.0877 3.1017 1.7612
0.1486 54.0 108 3.0418 0.0908 3.0418 1.7441
0.1233 55.0 110 2.4456 0.1517 2.4456 1.5639
0.1233 56.0 112 2.8118 0.1073 2.8118 1.6769
0.1233 57.0 114 2.7787 0.1210 2.7787 1.6669
0.1233 58.0 116 2.7518 0.1227 2.7518 1.6589
0.1233 59.0 118 2.7771 0.1209 2.7771 1.6665
0.1054 60.0 120 2.4018 0.1516 2.4018 1.5498
0.1054 61.0 122 2.5651 0.1327 2.5651 1.6016
0.1054 62.0 124 2.4406 0.1493 2.4406 1.5622
0.1054 63.0 126 2.8577 0.1144 2.8577 1.6905
0.1054 64.0 128 2.5507 0.1318 2.5507 1.5971
0.0981 65.0 130 2.0764 0.1847 2.0764 1.4410
0.0981 66.0 132 2.3426 0.1459 2.3426 1.5306
0.0981 67.0 134 3.0805 0.0948 3.0805 1.7551
0.0981 68.0 136 3.2191 0.0815 3.2191 1.7942
0.0981 69.0 138 2.6300 0.1184 2.6300 1.6217
0.1122 70.0 140 1.9715 0.2115 1.9715 1.4041
0.1122 71.0 142 2.0239 0.1938 2.0239 1.4226
0.1122 72.0 144 2.5947 0.1181 2.5947 1.6108
0.1122 73.0 146 2.8110 0.1127 2.8110 1.6766
0.1122 74.0 148 2.5182 0.1347 2.5182 1.5869
0.0899 75.0 150 2.6086 0.1365 2.6086 1.6151
0.0899 76.0 152 2.9564 0.1153 2.9564 1.7194
0.0899 77.0 154 2.7835 0.1342 2.7835 1.6684
0.0899 78.0 156 2.5104 0.1472 2.5104 1.5844
0.0899 79.0 158 2.6229 0.1391 2.6229 1.6195
0.0772 80.0 160 2.6771 0.1336 2.6771 1.6362
0.0772 81.0 162 2.6291 0.1312 2.6291 1.6214
0.0772 82.0 164 2.4204 0.1493 2.4204 1.5558
0.0772 83.0 166 2.3233 0.1581 2.3233 1.5242
0.0772 84.0 168 2.3747 0.1514 2.3747 1.5410
0.0771 85.0 170 2.5471 0.1405 2.5471 1.5960
0.0771 86.0 172 2.6281 0.1360 2.6281 1.6211
0.0771 87.0 174 2.5029 0.1520 2.5029 1.5821
0.0771 88.0 176 2.4189 0.1629 2.4189 1.5553
0.0771 89.0 178 2.5380 0.1522 2.5380 1.5931
0.0766 90.0 180 2.7065 0.1380 2.7065 1.6451
0.0766 91.0 182 2.6679 0.1351 2.6679 1.6334
0.0766 92.0 184 2.5639 0.1471 2.5639 1.6012
0.0766 93.0 186 2.5141 0.1511 2.5141 1.5856
0.0766 94.0 188 2.5017 0.1513 2.5017 1.5817
0.0521 95.0 190 2.5129 0.1508 2.5129 1.5852
0.0521 96.0 192 2.4979 0.1555 2.4979 1.5805
0.0521 97.0 194 2.4822 0.1628 2.4822 1.5755
0.0521 98.0 196 2.5032 0.1601 2.5032 1.5822
0.0521 99.0 198 2.5438 0.1584 2.5438 1.5949
0.0576 100.0 200 2.5672 0.1569 2.5672 1.6023

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold0

Finetuned
(2421)
this model