genki10's picture
End of training
c0711a7 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold3
    results: []

ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5472
  • Qwk: 0.6157
  • Mse: 0.5468
  • Rmse: 0.7395

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 2.0 2 10.1792 0.0 10.1785 3.1904
No log 4.0 4 8.5089 0.0 8.5083 2.9169
No log 6.0 6 6.9593 0.0 6.9588 2.6380
No log 8.0 8 5.4856 0.0235 5.4854 2.3421
8.9084 10.0 10 4.5301 0.0076 4.5301 2.1284
8.9084 12.0 12 3.7061 0.0 3.7062 1.9252
8.9084 14.0 14 3.0780 0.0 3.0783 1.7545
8.9084 16.0 16 2.4917 0.0806 2.4921 1.5786
8.9084 18.0 18 2.0632 0.0462 2.0637 1.4365
4.248 20.0 20 1.7062 0.0365 1.7068 1.3064
4.248 22.0 22 1.4205 0.0266 1.4211 1.1921
4.248 24.0 24 1.2230 0.0365 1.2236 1.1062
4.248 26.0 26 1.0188 0.0266 1.0194 1.0097
4.248 28.0 28 0.9326 0.1345 0.9331 0.9660
2.2317 30.0 30 0.7686 0.4194 0.7691 0.8770
2.2317 32.0 32 0.6643 0.4239 0.6649 0.8154
2.2317 34.0 34 0.6961 0.4841 0.6964 0.8345
2.2317 36.0 36 0.5712 0.4966 0.5715 0.7560
2.2317 38.0 38 0.5742 0.4828 0.5746 0.7580
1.1982 40.0 40 0.6294 0.5328 0.6296 0.7935
1.1982 42.0 42 0.5522 0.5493 0.5524 0.7432
1.1982 44.0 44 0.5565 0.5326 0.5567 0.7461
1.1982 46.0 46 0.5330 0.6138 0.5330 0.7300
1.1982 48.0 48 0.5267 0.6243 0.5266 0.7257
0.6088 50.0 50 0.5512 0.6109 0.5512 0.7424
0.6088 52.0 52 0.5308 0.6299 0.5307 0.7285
0.6088 54.0 54 0.5550 0.6454 0.5548 0.7449
0.6088 56.0 56 0.5786 0.6130 0.5783 0.7605
0.6088 58.0 58 0.5721 0.6516 0.5719 0.7562
0.3243 60.0 60 0.5806 0.6334 0.5804 0.7618
0.3243 62.0 62 0.5647 0.6108 0.5644 0.7513
0.3243 64.0 64 0.5766 0.6371 0.5762 0.7591
0.3243 66.0 66 0.6710 0.6038 0.6707 0.8190
0.3243 68.0 68 0.6148 0.6469 0.6144 0.7838
0.2165 70.0 70 0.6383 0.6439 0.6378 0.7986
0.2165 72.0 72 0.6265 0.6445 0.6259 0.7912
0.2165 74.0 74 0.5973 0.6427 0.5968 0.7725
0.2165 76.0 76 0.5642 0.6337 0.5638 0.7509
0.2165 78.0 78 0.6005 0.6137 0.6001 0.7747
0.1667 80.0 80 0.5892 0.6100 0.5889 0.7674
0.1667 82.0 82 0.5564 0.6097 0.5561 0.7457
0.1667 84.0 84 0.5499 0.6275 0.5496 0.7413
0.1667 86.0 86 0.5634 0.6148 0.5630 0.7503
0.1667 88.0 88 0.5774 0.6205 0.5770 0.7596
0.1285 90.0 90 0.5857 0.6113 0.5852 0.7650
0.1285 92.0 92 0.5637 0.6233 0.5633 0.7505
0.1285 94.0 94 0.5507 0.6195 0.5502 0.7418
0.1285 96.0 96 0.5484 0.6197 0.5480 0.7403
0.1285 98.0 98 0.5466 0.6224 0.5462 0.7390
0.0925 100.0 100 0.5472 0.6157 0.5468 0.7395

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1