ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6105
  • Qwk: -0.0544
  • Mse: 2.6109
  • Rmse: 1.6158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 2.0 2 10.0422 0.0 10.0414 3.1688
No log 4.0 4 8.3600 0.0 8.3593 2.8912
No log 6.0 6 6.7075 0.0 6.7070 2.5898
No log 8.0 8 5.6349 0.0246 5.6346 2.3737
5.0421 10.0 10 4.4175 0.0076 4.4173 2.1017
5.0421 12.0 12 3.9267 0.0 3.9267 1.9816
5.0421 14.0 14 3.0630 0.0 3.0632 1.7502
5.0421 16.0 16 2.5124 0.0813 2.5127 1.5852
5.0421 18.0 18 2.4738 0.0437 2.4742 1.5730
2.1507 20.0 20 1.7999 0.0345 1.8004 1.3418
2.1507 22.0 22 1.6600 0.0247 1.6606 1.2886
2.1507 24.0 24 2.0979 0.0403 2.0984 1.4486
2.1507 26.0 26 2.0805 0.0551 2.0810 1.4426
2.1507 28.0 28 1.7880 0.0361 1.7886 1.3374
1.672 30.0 30 2.0786 0.0283 2.0792 1.4420
1.672 32.0 32 2.3627 0.0348 2.3633 1.5373
1.672 34.0 34 2.1553 0.0171 2.1559 1.4683
1.672 36.0 36 2.5371 -0.0123 2.5376 1.5930
1.672 38.0 38 2.3045 0.0056 2.3049 1.5182
1.0568 40.0 40 2.0772 -0.0012 2.0775 1.4414
1.0568 42.0 42 2.7665 -0.0184 2.7666 1.6633
1.0568 44.0 44 2.0043 0.0129 2.0046 1.4158
1.0568 46.0 46 2.4202 -0.0133 2.4204 1.5558
1.0568 48.0 48 2.5292 -0.0404 2.5294 1.5904
0.455 50.0 50 2.3014 -0.0120 2.3017 1.5171
0.455 52.0 52 2.6276 -0.0418 2.6279 1.6211
0.455 54.0 54 2.5162 -0.0431 2.5165 1.5863
0.455 56.0 56 2.0312 -0.0028 2.0317 1.4254
0.455 58.0 58 3.0641 -0.0535 3.0643 1.7505
0.2076 60.0 60 3.0322 -0.0478 3.0324 1.7414
0.2076 62.0 62 1.8241 -0.0099 1.8246 1.3508
0.2076 64.0 64 1.6130 -0.0133 1.6136 1.2703
0.2076 66.0 66 2.4066 -0.0474 2.4069 1.5514
0.2076 68.0 68 3.6666 -0.0638 3.6666 1.9148
0.2273 70.0 70 3.5766 -0.0572 3.5766 1.8912
0.2273 72.0 72 2.6045 -0.0505 2.6048 1.6139
0.2273 74.0 74 2.2854 -0.0501 2.2859 1.5119
0.2273 76.0 76 2.6014 -0.0456 2.6017 1.6130
0.2273 78.0 78 2.5650 -0.0442 2.5654 1.6017
0.1557 80.0 80 2.3119 -0.0516 2.3123 1.5206
0.1557 82.0 82 2.4799 -0.0490 2.4803 1.5749
0.1557 84.0 84 2.6063 -0.0526 2.6067 1.6145
0.1557 86.0 86 2.7569 -0.0576 2.7572 1.6605
0.1557 88.0 88 2.7278 -0.0544 2.7282 1.6517
0.109 90.0 90 2.6859 -0.0511 2.6863 1.6390
0.109 92.0 92 2.5581 -0.0516 2.5585 1.5995
0.109 94.0 94 2.6192 -0.0530 2.6196 1.6185
0.109 96.0 96 2.6701 -0.0561 2.6705 1.6342
0.109 98.0 98 2.6373 -0.0530 2.6377 1.6241
0.1008 100.0 100 2.6105 -0.0544 2.6109 1.6158

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
25
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold3

Finetuned
(2422)
this model