fabriceyhc's picture
Add evaluation results on the amazon_polarity config and test split of amazon_polarity (#2)
36abc4b
|
raw
history blame
7.99 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
  - sibyl
datasets:
  - amazon_polarity
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-amazon_polarity
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: amazon_polarity
          type: amazon_polarity
          args: amazon_polarity
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.94647
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: amazon_polarity
          type: amazon_polarity
          config: amazon_polarity
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9464875
            verified: true
          - name: Precision
            type: precision
            value: 0.9528844934702675
            verified: true
          - name: Recall
            type: recall
            value: 0.939425
            verified: true
          - name: AUC
            type: auc
            value: 0.9863499156250001
            verified: true
          - name: F1
            type: f1
            value: 0.9461068798388619
            verified: true
          - name: loss
            type: loss
            value: 0.2944573760032654
            verified: true

bert-base-uncased-amazon_polarity

This model is a fine-tuned version of bert-base-uncased on the amazon_polarity dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2945
  • Accuracy: 0.9465

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1782000
  • training_steps: 17820000

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7155 0.0 2000 0.7060 0.4622
0.7054 0.0 4000 0.6925 0.5165
0.6842 0.0 6000 0.6653 0.6116
0.6375 0.0 8000 0.5721 0.7909
0.4671 0.0 10000 0.3238 0.8770
0.3403 0.0 12000 0.3692 0.8861
0.4162 0.0 14000 0.4560 0.8908
0.4728 0.0 16000 0.5071 0.8980
0.5111 0.01 18000 0.5204 0.9015
0.4792 0.01 20000 0.5193 0.9076
0.544 0.01 22000 0.4835 0.9133
0.4745 0.01 24000 0.4689 0.9170
0.4403 0.01 26000 0.4778 0.9177
0.4405 0.01 28000 0.4754 0.9163
0.4375 0.01 30000 0.4808 0.9175
0.4628 0.01 32000 0.4340 0.9244
0.4488 0.01 34000 0.4162 0.9265
0.4608 0.01 36000 0.4031 0.9271
0.4478 0.01 38000 0.4502 0.9253
0.4237 0.01 40000 0.4087 0.9279
0.4601 0.01 42000 0.4133 0.9269
0.4153 0.01 44000 0.4230 0.9306
0.4096 0.01 46000 0.4108 0.9301
0.4348 0.01 48000 0.4138 0.9309
0.3787 0.01 50000 0.4066 0.9324
0.4172 0.01 52000 0.4812 0.9206
0.3897 0.02 54000 0.4013 0.9325
0.3787 0.02 56000 0.3837 0.9344
0.4253 0.02 58000 0.3925 0.9347
0.3959 0.02 60000 0.3907 0.9353
0.4402 0.02 62000 0.3708 0.9341
0.4115 0.02 64000 0.3477 0.9361
0.3876 0.02 66000 0.3634 0.9373
0.4286 0.02 68000 0.3778 0.9378
0.422 0.02 70000 0.3540 0.9361
0.3732 0.02 72000 0.3853 0.9378
0.3641 0.02 74000 0.3951 0.9386
0.3701 0.02 76000 0.3582 0.9388
0.4498 0.02 78000 0.3268 0.9375
0.3587 0.02 80000 0.3825 0.9401
0.4474 0.02 82000 0.3155 0.9391
0.3598 0.02 84000 0.3666 0.9388
0.389 0.02 86000 0.3745 0.9377
0.3625 0.02 88000 0.3776 0.9387
0.3511 0.03 90000 0.4275 0.9336
0.3428 0.03 92000 0.4301 0.9336
0.4042 0.03 94000 0.3547 0.9359
0.3583 0.03 96000 0.3763 0.9396
0.3887 0.03 98000 0.3213 0.9412
0.3915 0.03 100000 0.3557 0.9409
0.3378 0.03 102000 0.3627 0.9418
0.349 0.03 104000 0.3614 0.9402
0.3596 0.03 106000 0.3834 0.9381
0.3519 0.03 108000 0.3560 0.9421
0.3598 0.03 110000 0.3485 0.9419
0.3642 0.03 112000 0.3754 0.9395
0.3477 0.03 114000 0.3634 0.9426
0.4202 0.03 116000 0.3071 0.9427
0.3656 0.03 118000 0.3155 0.9441
0.3709 0.03 120000 0.2923 0.9433
0.374 0.03 122000 0.3272 0.9441
0.3142 0.03 124000 0.3348 0.9444
0.3452 0.04 126000 0.3603 0.9436
0.3365 0.04 128000 0.3339 0.9434
0.3353 0.04 130000 0.3471 0.9450
0.343 0.04 132000 0.3508 0.9418
0.3174 0.04 134000 0.3753 0.9436
0.3009 0.04 136000 0.3687 0.9422
0.3785 0.04 138000 0.3818 0.9396
0.3199 0.04 140000 0.3291 0.9438
0.4049 0.04 142000 0.3372 0.9454
0.3435 0.04 144000 0.3315 0.9459
0.3814 0.04 146000 0.3462 0.9401
0.359 0.04 148000 0.3981 0.9361
0.3552 0.04 150000 0.3226 0.9469
0.345 0.04 152000 0.3731 0.9384
0.3228 0.04 154000 0.2956 0.9471
0.3637 0.04 156000 0.2869 0.9477
0.349 0.04 158000 0.3331 0.9430
0.3374 0.04 160000 0.4159 0.9340
0.3718 0.05 162000 0.3241 0.9459
0.315 0.05 164000 0.3544 0.9391
0.3215 0.05 166000 0.3311 0.9451
0.3464 0.05 168000 0.3682 0.9453
0.3495 0.05 170000 0.3193 0.9469
0.305 0.05 172000 0.4132 0.9389
0.3479 0.05 174000 0.3465 0.947
0.3537 0.05 176000 0.3277 0.9449

Framework versions

  • Transformers 4.10.2
  • Pytorch 1.7.1
  • Datasets 1.12.1
  • Tokenizers 0.10.3