bert-base-uncased-amazon_polarity
This model is a fine-tuned version of bert-base-uncased on the amazon_polarity dataset. It achieves the following results on the evaluation set:
- Loss: 0.2945
- Accuracy: 0.9465
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1782000
- training_steps: 17820000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7155 | 0.0 | 2000 | 0.7060 | 0.4622 |
0.7054 | 0.0 | 4000 | 0.6925 | 0.5165 |
0.6842 | 0.0 | 6000 | 0.6653 | 0.6116 |
0.6375 | 0.0 | 8000 | 0.5721 | 0.7909 |
0.4671 | 0.0 | 10000 | 0.3238 | 0.8770 |
0.3403 | 0.0 | 12000 | 0.3692 | 0.8861 |
0.4162 | 0.0 | 14000 | 0.4560 | 0.8908 |
0.4728 | 0.0 | 16000 | 0.5071 | 0.8980 |
0.5111 | 0.01 | 18000 | 0.5204 | 0.9015 |
0.4792 | 0.01 | 20000 | 0.5193 | 0.9076 |
0.544 | 0.01 | 22000 | 0.4835 | 0.9133 |
0.4745 | 0.01 | 24000 | 0.4689 | 0.9170 |
0.4403 | 0.01 | 26000 | 0.4778 | 0.9177 |
0.4405 | 0.01 | 28000 | 0.4754 | 0.9163 |
0.4375 | 0.01 | 30000 | 0.4808 | 0.9175 |
0.4628 | 0.01 | 32000 | 0.4340 | 0.9244 |
0.4488 | 0.01 | 34000 | 0.4162 | 0.9265 |
0.4608 | 0.01 | 36000 | 0.4031 | 0.9271 |
0.4478 | 0.01 | 38000 | 0.4502 | 0.9253 |
0.4237 | 0.01 | 40000 | 0.4087 | 0.9279 |
0.4601 | 0.01 | 42000 | 0.4133 | 0.9269 |
0.4153 | 0.01 | 44000 | 0.4230 | 0.9306 |
0.4096 | 0.01 | 46000 | 0.4108 | 0.9301 |
0.4348 | 0.01 | 48000 | 0.4138 | 0.9309 |
0.3787 | 0.01 | 50000 | 0.4066 | 0.9324 |
0.4172 | 0.01 | 52000 | 0.4812 | 0.9206 |
0.3897 | 0.02 | 54000 | 0.4013 | 0.9325 |
0.3787 | 0.02 | 56000 | 0.3837 | 0.9344 |
0.4253 | 0.02 | 58000 | 0.3925 | 0.9347 |
0.3959 | 0.02 | 60000 | 0.3907 | 0.9353 |
0.4402 | 0.02 | 62000 | 0.3708 | 0.9341 |
0.4115 | 0.02 | 64000 | 0.3477 | 0.9361 |
0.3876 | 0.02 | 66000 | 0.3634 | 0.9373 |
0.4286 | 0.02 | 68000 | 0.3778 | 0.9378 |
0.422 | 0.02 | 70000 | 0.3540 | 0.9361 |
0.3732 | 0.02 | 72000 | 0.3853 | 0.9378 |
0.3641 | 0.02 | 74000 | 0.3951 | 0.9386 |
0.3701 | 0.02 | 76000 | 0.3582 | 0.9388 |
0.4498 | 0.02 | 78000 | 0.3268 | 0.9375 |
0.3587 | 0.02 | 80000 | 0.3825 | 0.9401 |
0.4474 | 0.02 | 82000 | 0.3155 | 0.9391 |
0.3598 | 0.02 | 84000 | 0.3666 | 0.9388 |
0.389 | 0.02 | 86000 | 0.3745 | 0.9377 |
0.3625 | 0.02 | 88000 | 0.3776 | 0.9387 |
0.3511 | 0.03 | 90000 | 0.4275 | 0.9336 |
0.3428 | 0.03 | 92000 | 0.4301 | 0.9336 |
0.4042 | 0.03 | 94000 | 0.3547 | 0.9359 |
0.3583 | 0.03 | 96000 | 0.3763 | 0.9396 |
0.3887 | 0.03 | 98000 | 0.3213 | 0.9412 |
0.3915 | 0.03 | 100000 | 0.3557 | 0.9409 |
0.3378 | 0.03 | 102000 | 0.3627 | 0.9418 |
0.349 | 0.03 | 104000 | 0.3614 | 0.9402 |
0.3596 | 0.03 | 106000 | 0.3834 | 0.9381 |
0.3519 | 0.03 | 108000 | 0.3560 | 0.9421 |
0.3598 | 0.03 | 110000 | 0.3485 | 0.9419 |
0.3642 | 0.03 | 112000 | 0.3754 | 0.9395 |
0.3477 | 0.03 | 114000 | 0.3634 | 0.9426 |
0.4202 | 0.03 | 116000 | 0.3071 | 0.9427 |
0.3656 | 0.03 | 118000 | 0.3155 | 0.9441 |
0.3709 | 0.03 | 120000 | 0.2923 | 0.9433 |
0.374 | 0.03 | 122000 | 0.3272 | 0.9441 |
0.3142 | 0.03 | 124000 | 0.3348 | 0.9444 |
0.3452 | 0.04 | 126000 | 0.3603 | 0.9436 |
0.3365 | 0.04 | 128000 | 0.3339 | 0.9434 |
0.3353 | 0.04 | 130000 | 0.3471 | 0.9450 |
0.343 | 0.04 | 132000 | 0.3508 | 0.9418 |
0.3174 | 0.04 | 134000 | 0.3753 | 0.9436 |
0.3009 | 0.04 | 136000 | 0.3687 | 0.9422 |
0.3785 | 0.04 | 138000 | 0.3818 | 0.9396 |
0.3199 | 0.04 | 140000 | 0.3291 | 0.9438 |
0.4049 | 0.04 | 142000 | 0.3372 | 0.9454 |
0.3435 | 0.04 | 144000 | 0.3315 | 0.9459 |
0.3814 | 0.04 | 146000 | 0.3462 | 0.9401 |
0.359 | 0.04 | 148000 | 0.3981 | 0.9361 |
0.3552 | 0.04 | 150000 | 0.3226 | 0.9469 |
0.345 | 0.04 | 152000 | 0.3731 | 0.9384 |
0.3228 | 0.04 | 154000 | 0.2956 | 0.9471 |
0.3637 | 0.04 | 156000 | 0.2869 | 0.9477 |
0.349 | 0.04 | 158000 | 0.3331 | 0.9430 |
0.3374 | 0.04 | 160000 | 0.4159 | 0.9340 |
0.3718 | 0.05 | 162000 | 0.3241 | 0.9459 |
0.315 | 0.05 | 164000 | 0.3544 | 0.9391 |
0.3215 | 0.05 | 166000 | 0.3311 | 0.9451 |
0.3464 | 0.05 | 168000 | 0.3682 | 0.9453 |
0.3495 | 0.05 | 170000 | 0.3193 | 0.9469 |
0.305 | 0.05 | 172000 | 0.4132 | 0.9389 |
0.3479 | 0.05 | 174000 | 0.3465 | 0.947 |
0.3537 | 0.05 | 176000 | 0.3277 | 0.9449 |
Framework versions
- Transformers 4.10.2
- Pytorch 1.7.1
- Datasets 1.12.1
- Tokenizers 0.10.3
- Downloads last month
- 63
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train fabriceyhc/bert-base-uncased-amazon_polarity
Evaluation results
- Accuracy on amazon_polarityself-reported0.946
- Accuracy on amazon_polaritytest set self-reported0.946
- Precision on amazon_polaritytest set self-reported0.953
- Recall on amazon_polaritytest set self-reported0.939
- AUC on amazon_polaritytest set self-reported0.986
- F1 on amazon_polaritytest set self-reported0.946
- loss on amazon_polaritytest set self-reported0.294