whisper-tiny-en / README.md
eriwik's picture
End of training
1efc2c9 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny-en
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Minds 14
          type: PolyAI/minds14
          config: en-US
          split: train[450:]
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 32.93978748524203

whisper-tiny-en

This model is a fine-tuned version of openai/whisper-tiny on the Minds 14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6469
  • Wer Ortho: 33.0660
  • Wer: 32.9398

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0013 17.2414 500 0.6469 33.0660 32.9398

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3