--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Minds 14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 32.93978748524203 --- # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Minds 14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6469 - Wer Ortho: 33.0660 - Wer: 32.9398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:| | 0.0013 | 17.2414 | 500 | 0.6469 | 33.0660 | 32.9398 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3