metadata
license: mit
datasets:
- eligapris/kirundi-english
language:
- rn
library_name: transformers
eligapris/rn-tokenizer
Model Description
This repository contains a BPE tokenizer trained specifically for the Kirundi language (ISO code: run).
Tokenizer Details
- Type: BPE (Byte-Pair Encoding)
- Vocabulary Size: 30,000 tokens
- Special Tokens: [UNK], [CLS], [SEP], [PAD], [MASK]
- Pre-tokenization: Whitespace-based
Intended Uses & Limitations
Intended Uses
- Text processing for Kirundi language
- Pre-processing for NLP tasks involving Kirundi
- Foundation for developing Kirundi language applications
Limitations
- The tokenizer is trained on a specific corpus and may not cover all Kirundi dialects
- Limited to the vocabulary observed in the training data
- Performance may vary on domain-specific text
Training Data
The tokenizer was trained on the Kirundi-English parallel corpus:
- Dataset: eligapris/kirundi-english
- Size: 21.4k sentence pairs
- Nature: Parallel corpus with Kirundi and English translations
- Domain: Mixed domain including religious, general, and conversational text
Installation
You can use this tokenizer in your project by first installing the required dependencies:
pip install transformers
Then load the tokenizer directly from the Hugging Face Hub:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("eligapris/rn-tokenizer")
Or if you have downloaded the tokenizer files locally:
from transformers import PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
Usage Examples
Loading and Using the Tokenizer
You can load the tokenizer in two ways:
# Method 1: Using AutoTokenizer (recommended)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("eligapris/rn-tokenizer")
# Method 2: Using PreTrainedTokenizerFast with local file
from transformers import PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
Basic Usage Examples
- Tokenize a single sentence:
# Basic tokenization
text = "ab'umudugudu hafi ya bose bateranira kumva ijambo ry'Imana."
encoded = tokenizer(text)
print(f"Input IDs: {encoded['input_ids']}")
print(f"Tokens: {tokenizer.convert_ids_to_tokens(encoded['input_ids'])}")
- Batch tokenization:
# Process multiple sentences at once
texts = [
"ifumbire mvaruganda.",
"aba azi gukora kandi afite ubushobozi"
]
encoded = tokenizer(texts, padding=True, truncation=True)
print("Batch encoding:", encoded)
- Get token IDs with special tokens:
# Add special tokens like [CLS] and [SEP]
encoded = tokenizer(text, add_special_tokens=True)
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'])
print(f"Tokens with special tokens: {tokens}")
- Decode tokenized text:
# Convert token IDs back to text
ids = encoded['input_ids']
decoded_text = tokenizer.decode(ids)
print(f"Decoded text: {decoded_text}")
- Padding and truncation:
# Pad or truncate sequences to a specific length
encoded = tokenizer(
texts,
padding='max_length',
max_length=32,
truncation=True,
return_tensors='pt' # Return PyTorch tensors
)
print("Padded sequences:", encoded['input_ids'].shape)
Future Development
This tokenizer is intended to serve as a foundation for future Kirundi language model development, including potential fine-tuning with techniques like LoRA (Low-Rank Adaptation).
Technical Specifications
Software Requirements
dependencies = {
"transformers": ">=4.30.0",
"tokenizers": ">=0.13.0"
}
Contact
eligrapris
Updates and Versions
- v1.0.0 (Initial Release)
- Base tokenizer implementation
- Trained on Kirundi-English parallel corpus
- Basic functionality and documentation
Acknowledgments
- Dataset provided by eligapris
- Hugging Face's Transformers and Tokenizers libraries