Transformers
Kirundi
bert
File size: 4,075 Bytes
b01aef0
 
 
 
 
 
 
 
 
94f675f
 
 
b01aef0
94f675f
 
 
 
 
 
 
 
 
 
 
b01aef0
94f675f
 
 
 
 
 
 
 
 
b01aef0
94f675f
 
 
 
 
b01aef0
 
 
94f675f
b01aef0
 
 
94f675f
b01aef0
94f675f
b01aef0
 
2bf2682
b01aef0
94f675f
b01aef0
94f675f
b01aef0
 
8df0b89
b01aef0
94f675f
b01aef0
94f675f
b01aef0
94f675f
b01aef0
94f675f
 
b01aef0
 
02c8e51
b01aef0
 
 
02c8e51
94f675f
 
b01aef0
94f675f
b01aef0
94f675f
b01aef0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f675f
b01aef0
 
 
 
 
 
94f675f
 
b01aef0
94f675f
b01aef0
 
 
 
 
94f675f
b01aef0
 
 
 
 
 
 
 
 
 
 
94f675f
 
b01aef0
 
94f675f
b01aef0
94f675f
b01aef0
 
 
 
 
 
 
94f675f
 
 
 
b01aef0
94f675f
 
 
 
 
 
b01aef0
94f675f
 
 
 
 
 
b01aef0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
license: mit
datasets:
- eligapris/kirundi-english
language:
- rn
library_name: transformers
---
# eligapris/rn-tokenizer

## Model Description

This repository contains a BPE tokenizer trained specifically for the Kirundi language (ISO code: run).

### Tokenizer Details
- **Type**: BPE (Byte-Pair Encoding)
- **Vocabulary Size**: 30,000 tokens
- **Special Tokens**: [UNK], [CLS], [SEP], [PAD], [MASK]
- **Pre-tokenization**: Whitespace-based

## Intended Uses & Limitations

### Intended Uses
- Text processing for Kirundi language
- Pre-processing for NLP tasks involving Kirundi
- Foundation for developing Kirundi language applications

### Limitations
- The tokenizer is trained on a specific corpus and may not cover all Kirundi dialects
- Limited to the vocabulary observed in the training data
- Performance may vary on domain-specific text

## Training Data

The tokenizer was trained on the Kirundi-English parallel corpus:
- **Dataset**: eligapris/kirundi-english
- **Size**: 21.4k sentence pairs
- **Nature**: Parallel corpus with Kirundi and English translations
- **Domain**: Mixed domain including religious, general, and conversational text

## Installation

You can use this tokenizer in your project by first installing the required dependencies:

```bash
pip install transformers
```

Then load the tokenizer directly from the Hugging Face Hub:

```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("eligapris/rn-tokenizer")
```

Or if you have downloaded the tokenizer files locally:

```python
from transformers import PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```

## Usage Examples

### Loading and Using the Tokenizer

You can load the tokenizer in two ways:

```python
# Method 1: Using AutoTokenizer (recommended)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("eligapris/rn-tokenizer")

# Method 2: Using PreTrainedTokenizerFast with local file
from transformers import PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```

#### Basic Usage Examples

1. Tokenize a single sentence:
```python
# Basic tokenization
text = "ab'umudugudu hafi ya bose bateranira kumva ijambo ry'Imana."
encoded = tokenizer(text)
print(f"Input IDs: {encoded['input_ids']}")
print(f"Tokens: {tokenizer.convert_ids_to_tokens(encoded['input_ids'])}")
```

2. Batch tokenization:
```python
# Process multiple sentences at once
texts = [
    "ifumbire mvaruganda.",
    "aba azi gukora kandi afite ubushobozi"
]
encoded = tokenizer(texts, padding=True, truncation=True)
print("Batch encoding:", encoded)
```

3. Get token IDs with special tokens:
```python
# Add special tokens like [CLS] and [SEP]
encoded = tokenizer(text, add_special_tokens=True)
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'])
print(f"Tokens with special tokens: {tokens}")
```

4. Decode tokenized text:
```python
# Convert token IDs back to text
ids = encoded['input_ids']
decoded_text = tokenizer.decode(ids)
print(f"Decoded text: {decoded_text}")
```

5. Padding and truncation:
```python
# Pad or truncate sequences to a specific length
encoded = tokenizer(
    texts,
    padding='max_length',
    max_length=32,
    truncation=True,
    return_tensors='pt'  # Return PyTorch tensors
)
print("Padded sequences:", encoded['input_ids'].shape)
```

## Future Development
This tokenizer is intended to serve as a foundation for future Kirundi language model development, including potential fine-tuning with techniques like LoRA (Low-Rank Adaptation).

## Technical Specifications

### Software Requirements
```python
dependencies = {
    "transformers": ">=4.30.0",
    "tokenizers": ">=0.13.0"
}
```


## Contact

eligrapris

---

## Updates and Versions

- v1.0.0 (Initial Release)
  - Base tokenizer implementation
  - Trained on Kirundi-English parallel corpus
  - Basic functionality and documentation

## Acknowledgments

- Dataset provided by eligapris
- Hugging Face's Transformers and Tokenizers libraries