metadata
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-sidewalk-2
results: []
segformer-b0-finetuned-segments-sidewalk-2
This model is a fine-tuned version of nvidia/mit-b0 on the eleninaneversmiles/wheels dataset. It achieves the following results on the evaluation set:
- Loss: 0.1287
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.9957 | 2.8571 | 20 | 3.4269 |
2.6593 | 5.7143 | 40 | 2.3621 |
1.9746 | 8.5714 | 60 | 1.2378 |
1.5998 | 11.4286 | 80 | 1.2329 |
1.3299 | 14.2857 | 100 | 0.8019 |
1.3781 | 17.1429 | 120 | 0.8478 |
2.1912 | 20.0 | 140 | 0.6386 |
1.0362 | 22.8571 | 160 | 0.6467 |
1.3817 | 25.7143 | 180 | 0.4496 |
0.8108 | 28.5714 | 200 | 0.4032 |
0.8187 | 31.4286 | 220 | 0.4650 |
0.6671 | 34.2857 | 240 | 0.3251 |
0.6062 | 37.1429 | 260 | 0.4035 |
1.4152 | 40.0 | 280 | 0.3076 |
1.3078 | 42.8571 | 300 | 0.2517 |
0.4267 | 45.7143 | 320 | 0.2405 |
0.5829 | 48.5714 | 340 | 0.2142 |
0.8742 | 51.4286 | 360 | 0.2055 |
0.3055 | 54.2857 | 380 | 0.2257 |
0.5966 | 57.1429 | 400 | 0.1559 |
0.5006 | 60.0 | 420 | 0.1927 |
0.4433 | 62.8571 | 440 | 0.1525 |
0.2377 | 65.7143 | 460 | 0.1597 |
0.2612 | 68.5714 | 480 | 0.1703 |
0.477 | 71.4286 | 500 | 0.1663 |
0.2006 | 74.2857 | 520 | 0.1427 |
0.2641 | 77.1429 | 540 | 0.1370 |
0.5154 | 80.0 | 560 | 0.1386 |
0.447 | 82.8571 | 580 | 0.1274 |
0.195 | 85.7143 | 600 | 0.1236 |
0.1643 | 88.5714 | 620 | 0.1420 |
0.4199 | 91.4286 | 640 | 0.1226 |
0.1644 | 94.2857 | 660 | 0.1419 |
0.312 | 97.1429 | 680 | 0.1365 |
0.3905 | 100.0 | 700 | 0.1181 |
0.4035 | 102.8571 | 720 | 0.1305 |
0.1411 | 105.7143 | 740 | 0.1262 |
0.3018 | 108.5714 | 760 | 0.1322 |
0.1332 | 111.4286 | 780 | 0.1317 |
0.303 | 114.2857 | 800 | 0.1205 |
0.2399 | 117.1429 | 820 | 0.1358 |
0.2488 | 120.0 | 840 | 0.1226 |
0.304 | 122.8571 | 860 | 0.1275 |
0.2278 | 125.7143 | 880 | 0.1280 |
0.2718 | 128.5714 | 900 | 0.1294 |
0.5304 | 131.4286 | 920 | 0.1320 |
0.1143 | 134.2857 | 940 | 0.1279 |
0.1075 | 137.1429 | 960 | 0.1258 |
0.2103 | 140.0 | 980 | 0.1349 |
0.1483 | 142.8571 | 1000 | 0.1230 |
0.287 | 145.7143 | 1020 | 0.1253 |
0.3606 | 148.5714 | 1040 | 0.1287 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cpu
- Datasets 2.19.2
- Tokenizers 0.19.1