File size: 4,239 Bytes
cd203fa
 
df7e8d1
cd203fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7e8d1
cd203fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df7e8d1
cd203fa
 
 
df7e8d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd203fa
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---

license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-sidewalk-2
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-sidewalk-2

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the eleninaneversmiles/wheels dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1287

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05

- train_batch_size: 2

- eval_batch_size: 2

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 150

### Training results

| Training Loss | Epoch    | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 2.9957        | 2.8571   | 20   | 3.4269          |
| 2.6593        | 5.7143   | 40   | 2.3621          |
| 1.9746        | 8.5714   | 60   | 1.2378          |
| 1.5998        | 11.4286  | 80   | 1.2329          |
| 1.3299        | 14.2857  | 100  | 0.8019          |
| 1.3781        | 17.1429  | 120  | 0.8478          |
| 2.1912        | 20.0     | 140  | 0.6386          |
| 1.0362        | 22.8571  | 160  | 0.6467          |
| 1.3817        | 25.7143  | 180  | 0.4496          |
| 0.8108        | 28.5714  | 200  | 0.4032          |
| 0.8187        | 31.4286  | 220  | 0.4650          |
| 0.6671        | 34.2857  | 240  | 0.3251          |
| 0.6062        | 37.1429  | 260  | 0.4035          |
| 1.4152        | 40.0     | 280  | 0.3076          |
| 1.3078        | 42.8571  | 300  | 0.2517          |
| 0.4267        | 45.7143  | 320  | 0.2405          |
| 0.5829        | 48.5714  | 340  | 0.2142          |
| 0.8742        | 51.4286  | 360  | 0.2055          |
| 0.3055        | 54.2857  | 380  | 0.2257          |
| 0.5966        | 57.1429  | 400  | 0.1559          |
| 0.5006        | 60.0     | 420  | 0.1927          |
| 0.4433        | 62.8571  | 440  | 0.1525          |
| 0.2377        | 65.7143  | 460  | 0.1597          |
| 0.2612        | 68.5714  | 480  | 0.1703          |
| 0.477         | 71.4286  | 500  | 0.1663          |
| 0.2006        | 74.2857  | 520  | 0.1427          |
| 0.2641        | 77.1429  | 540  | 0.1370          |
| 0.5154        | 80.0     | 560  | 0.1386          |
| 0.447         | 82.8571  | 580  | 0.1274          |
| 0.195         | 85.7143  | 600  | 0.1236          |
| 0.1643        | 88.5714  | 620  | 0.1420          |
| 0.4199        | 91.4286  | 640  | 0.1226          |
| 0.1644        | 94.2857  | 660  | 0.1419          |
| 0.312         | 97.1429  | 680  | 0.1365          |
| 0.3905        | 100.0    | 700  | 0.1181          |
| 0.4035        | 102.8571 | 720  | 0.1305          |
| 0.1411        | 105.7143 | 740  | 0.1262          |
| 0.3018        | 108.5714 | 760  | 0.1322          |
| 0.1332        | 111.4286 | 780  | 0.1317          |
| 0.303         | 114.2857 | 800  | 0.1205          |
| 0.2399        | 117.1429 | 820  | 0.1358          |
| 0.2488        | 120.0    | 840  | 0.1226          |
| 0.304         | 122.8571 | 860  | 0.1275          |
| 0.2278        | 125.7143 | 880  | 0.1280          |
| 0.2718        | 128.5714 | 900  | 0.1294          |
| 0.5304        | 131.4286 | 920  | 0.1320          |
| 0.1143        | 134.2857 | 940  | 0.1279          |
| 0.1075        | 137.1429 | 960  | 0.1258          |
| 0.2103        | 140.0    | 980  | 0.1349          |
| 0.1483        | 142.8571 | 1000 | 0.1230          |
| 0.287         | 145.7143 | 1020 | 0.1253          |
| 0.3606        | 148.5714 | 1040 | 0.1287          |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cpu
- Datasets 2.19.2
- Tokenizers 0.19.1