eleninaneversmiles commited on
Commit
cd203fa
·
verified ·
1 Parent(s): f05c42d

End of training

Browse files
Files changed (4) hide show
  1. README.md +73 -199
  2. config.json +122 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,73 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b0-finetuned-segments-sidewalk-2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b0-finetuned-segments-sidewalk-2
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the eleninaneversmiles/wheels dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.4771
21
+ - Mean Iou: 0.4995
22
+ - Mean Accuracy: 0.9990
23
+ - Overall Accuracy: 0.9990
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 6e-05
43
+ - train_batch_size: 2
44
+ - eval_batch_size: 2
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 50
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|
54
+ | 2.5955 | 4.0 | 20 | 2.9079 | 0.5000 | 0.9999 | 0.9999 |
55
+ | 2.5186 | 8.0 | 40 | 2.4166 | 0.5000 | 0.9999 | 0.9999 |
56
+ | 2.124 | 12.0 | 60 | 2.1256 | 0.4999 | 0.9998 | 0.9998 |
57
+ | 2.0053 | 16.0 | 80 | 1.9401 | 0.4997 | 0.9994 | 0.9994 |
58
+ | 1.7728 | 20.0 | 100 | 1.8506 | 0.4997 | 0.9994 | 0.9994 |
59
+ | 1.6636 | 24.0 | 120 | 1.7917 | 0.4997 | 0.9994 | 0.9994 |
60
+ | 1.5837 | 28.0 | 140 | 1.7133 | 0.4996 | 0.9993 | 0.9993 |
61
+ | 1.6926 | 32.0 | 160 | 1.6387 | 0.4998 | 0.9995 | 0.9995 |
62
+ | 1.6305 | 36.0 | 180 | 1.5724 | 0.4996 | 0.9992 | 0.9992 |
63
+ | 1.4093 | 40.0 | 200 | 1.5139 | 0.4994 | 0.9987 | 0.9987 |
64
+ | 1.5496 | 44.0 | 220 | 1.5050 | 0.4995 | 0.9991 | 0.9991 |
65
+ | 1.3068 | 48.0 | 240 | 1.4771 | 0.4995 | 0.9990 | 0.9990 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.41.2
71
+ - Pytorch 2.3.1+cpu
72
+ - Datasets 2.19.2
73
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "1": 1,
32
+ "2": 1,
33
+ "3": 1,
34
+ "4": 1,
35
+ "5": 1,
36
+ "6": 1,
37
+ "7": 1,
38
+ "8": 1,
39
+ "9": 1,
40
+ "10": 1,
41
+ "11": 1,
42
+ "12": 1,
43
+ "13": 1,
44
+ "14": 1,
45
+ "15": 1,
46
+ "16": 1,
47
+ "17": 1,
48
+ "18": 1,
49
+ "19": 1,
50
+ "20": 1,
51
+ "21": 1,
52
+ "22": 1,
53
+ "23": 1,
54
+ "24": 1,
55
+ "25": 1,
56
+ "26": 1,
57
+ "27": 1,
58
+ "28": 1,
59
+ "29": 1,
60
+ "30": 1,
61
+ "31": 1,
62
+ "32": 1,
63
+ "33": 1,
64
+ "34": 1,
65
+ "35": 1,
66
+ "36": 1,
67
+ "37": 1,
68
+ "38": 1,
69
+ "39": 1,
70
+ "40": 1,
71
+ "41": 1,
72
+ "42": 1,
73
+ "43": 1,
74
+ "44": 1,
75
+ "45": 1,
76
+ "46": 1,
77
+ "47": 1
78
+ },
79
+ "image_size": 224,
80
+ "initializer_range": 0.02,
81
+ "label2id": {
82
+ "1": 47
83
+ },
84
+ "layer_norm_eps": 1e-06,
85
+ "mlp_ratios": [
86
+ 4,
87
+ 4,
88
+ 4,
89
+ 4
90
+ ],
91
+ "model_type": "segformer",
92
+ "num_attention_heads": [
93
+ 1,
94
+ 2,
95
+ 5,
96
+ 8
97
+ ],
98
+ "num_channels": 3,
99
+ "num_encoder_blocks": 4,
100
+ "patch_sizes": [
101
+ 7,
102
+ 3,
103
+ 3,
104
+ 3
105
+ ],
106
+ "reshape_last_stage": true,
107
+ "semantic_loss_ignore_index": 255,
108
+ "sr_ratios": [
109
+ 8,
110
+ 4,
111
+ 2,
112
+ 1
113
+ ],
114
+ "strides": [
115
+ 4,
116
+ 2,
117
+ 2,
118
+ 2
119
+ ],
120
+ "torch_dtype": "float32",
121
+ "transformers_version": "4.41.2"
122
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c155b8318f8043abd43d7a403a13a19548ef960006b447a976643dbe96a333b
3
+ size 14931044
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6897cd29cb1cbec34fe30b39b19fcd125677e2a72ccc7161c2422f597973e00a
3
+ size 5176