e22vvb's picture
Model save
260246e verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/mt5-base
tags:
  - generated_from_trainer
model-index:
  - name: mt5-base_EN_spider_no_decode
    results: []

mt5-base_EN_spider_no_decode

This model is a fine-tuned version of google/mt5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Rouge2 Precision: 0.0109
  • Rouge2 Recall: 0.0036
  • Rouge2 Fmeasure: 0.005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
0.0 1.0 9693 nan 0.0109 0.0036 0.005
0.0 2.0 19386 nan 0.0109 0.0036 0.005
0.0 3.0 29079 nan 0.0109 0.0036 0.005
0.0 4.0 38772 nan 0.0109 0.0036 0.005
0.0 5.0 48465 nan 0.0109 0.0036 0.005
0.0 6.0 58158 nan 0.0109 0.0036 0.005
0.0 7.0 67851 nan 0.0109 0.0036 0.005
0.0 8.0 77544 nan 0.0109 0.0036 0.005
0.0 9.0 87237 nan 0.0109 0.0036 0.005
0.0 10.0 96930 nan 0.0109 0.0036 0.005
0.0 11.0 106623 nan 0.0109 0.0036 0.005
0.0 12.0 116316 nan 0.0109 0.0036 0.005
0.0 13.0 126009 nan 0.0109 0.0036 0.005
0.0 14.0 135702 nan 0.0109 0.0036 0.005
0.0 15.0 145395 nan 0.0109 0.0036 0.005

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.2.2
  • Datasets 2.16.1
  • Tokenizers 0.20.3