File size: 3,221 Bytes
260246e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---

library_name: transformers
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
model-index:
- name: mt5-base_EN_spider_no_decode
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-base_EN_spider_no_decode

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge2 Precision: 0.0109
- Rouge2 Recall: 0.0036
- Rouge2 Fmeasure: 0.005

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 1

- eval_batch_size: 1

- seed: 42

- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:|
| 0.0           | 1.0   | 9693   | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 2.0   | 19386  | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 3.0   | 29079  | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 4.0   | 38772  | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 5.0   | 48465  | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 6.0   | 58158  | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 7.0   | 67851  | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 8.0   | 77544  | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 9.0   | 87237  | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 10.0  | 96930  | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 11.0  | 106623 | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 12.0  | 116316 | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 13.0  | 126009 | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 14.0  | 135702 | nan             | 0.0109           | 0.0036        | 0.005           |
| 0.0           | 15.0  | 145395 | nan             | 0.0109           | 0.0036        | 0.005           |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.2.2
- Datasets 2.16.1
- Tokenizers 0.20.3