buyi89's picture
add Demo usage
a246edd verified
|
raw
history blame
3.75 kB
metadata
license: apache-2.0
datasets:
  - dyyyyyyyy/ScaleQuest-Math
language:
  - en
metrics:
  - accuracy
library_name: transformers
pipeline_tag: text-generation

Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch

Model Card for Qwen2-Math-7B-ScaleQuest

We introduce ScaleQuest, a scalable and novel data synthesis method that utilizes small-size open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints.

Datasets & Models

Math Dataset: link

We release two question generator models and four problem-solving models.

Model Type MATH Olympiad Bench πŸ€— HuggingFace
Download Link
ScaleQuest-DeepSeekMath-7B-QGen question generator - - link
ScaleQuest-Qwen2-Math-7B-QGen question generator - - link
Mistral-7B-ScaleQuest problem solver 62.9 26.8 link
Llama3-8B-ScaleQuest problem solver 64.4 25.3 link
DeepSeekMath-7B-ScaleQuest problem solver 66.6 29.9 link
Qwen2-Math-7B-ScaleQuest problem solver 73.4 38.5 link

Demo usage

Below is an example using Qwen2-Math-7B-ScaleQuest

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "dyyyyyyyy/Qwen2-Math-7B-ScaleQuest"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

question = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$."

sys_prompt="<|im_start|>system\nPlease reason step by step, and put your final answer within \\boxed{{}}.<|im_end|>\n"
query_prompt="<|im_start|>user" + "\n"
# {query}
prompt_after_query="<|im_end|>" + "\n"
resp_prompt="<|im_start|>assistant" + "\n"
prompt_before_resp=""
# {resp}
delim="<|im_end|>" + "\n"

prefix_prompt = f"{query_prompt}{question}{prompt_after_query}{resp_prompt}{prompt_before_resp}".rstrip(" ")
full_prompt = sys_prompt + delim.join([prefix_prompt])

# print(full_prompt)

inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=False)
print(tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True))

Citation

@article{ding2024unleashing,
    title={Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch}, 
    author={Ding, Yuyang and Shi, Xinyu and Liang, Xiaobo and Li, Juntao and Zhu, Qiaoming and Zhang, Min},
    journal={https://arxiv.org/abs/2410.18693}, 
    year={2024}
}